Kampar Regency, as the largest pineapple producer in Riau Province, has yet to provide significant added value for the surrounding SMEs. The limitations in technology and innovation, infrastructure support, and market access have prevented this potential from being optimally utilized. A Technopark can provide the necessary facilities and infrastructure to enhance production efficiency, innovation, and product quality, thus driving local economic growth. The objective of this study is to identify and determine potential locations for the development of a pineapple-based Technopark in Kampar Regency. This study is crucial as a fundamental consideration in selecting the technopark location and assessing the effectiveness and success of the technopark area. The method used in this study is AHP-GIS to analyze relevant parameters in the site selection process for the technopark area. Parameters considered in this study include slope, land use, availability of raw materials, accessibility of roads, access to water resources, proximity to universities, market access, population density, and landfill. The analysis results indicate that the percentage of land highly suitable for the technopark location is 0.78%, covering an area of 8943 hectares. Based on the analysis, it is recommended that potential locations for the development of a pineapple SMEs-based technopark in Kampar Regency are dispersed in Tambang District, encompassing three villages: Rimbo Panjang, Kualu Nenas and Tarai Bangun. The findings of this study align with the spatial planning of Kampar Regency.
This study investigates the escalating complexity and unpredictability of global supply chains, with a particular emphasis on resilience in the agricultural sector of Antioquia, Colombia. The aim of the study is to identify and analyze the dynamic capabilities, specifically flexibility and adaptability that significantly enhance resilience within agri-food supply chains. Given the sector’s vulnerability to external disruptions, such as climate change and economic volatility, a thorough understanding of these capabilities is imperative for the formulation of effective risk management strategies. This research is essential to provide empirical insights that can inform stakeholders on fortifying their supply chains, thereby contributing to enhanced competitiveness and sustainability. By presenting a comprehensive framework for evaluating dynamic capabilities, this study not only addresses existing gaps in the literature but also offers practical recommendations aimed at bolstering resilience in the agricultural sector.
Balancing broad learning outcomes in graduate programs with detailed classroom learning outcomes is increasingly crucial in education systems. This study employs a qualitative paradigm through a case study method to address the gap between learning outcomes at the graduate program level and those at the course level. Using the ESSENTIA CURRICULUM framework—a curriculum design methodology derived from software engineering practices—we propose an innovative and adaptable approach for aligning program-wide and course-specific learning outcomes. The ESSENTIA CURRICULUM, named for its focus on the “essence of the curriculum”, is applied to the ICT for Research course within the M.Sc. program in University Teaching at the University of Nariño. This framework fosters a consistent educational journey centered on learning achievements and demonstrates its effectiveness through a comprehensive self-assessment process and stakeholder feedback. The implications of this research are twofold: it highlights the potential of adopting interdisciplinary methodologies for curriculum design and provides a scalable and alternative strategy for harmonizing learning outcomes across diverse educational contexts. By bridging principles from software engineering into education, this novel approach offers new avenues for improving curriculum coherence and applicability.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
Ensuring access to quality education and career training is a crucial challenge, especially in developing nations. Vocational, scientific, technological, and engineering education are essential for active participation in any community and play a significant role in shaping life perspectives. The ability to sustain competitiveness depends on receiving high-quality vocational, scientific, technological, or engineering education and professional growth. These factors are vital for the long-term growth of prosperous economies and nation-building. Hence, this perspective review attempts to provide information on some contemporary pedagogies in science, technology, engineering, and mathematics (STEM) and science, technology, engineering, arts, and mathematics (STEAM) vis-à-vis scientific and engineering education in Nigeria. The study zooms into the challenges and possible solutions that will promote and enhance pedagogies in scientific and engineering education in Nigeria. The study adopted a perspective review approach in overviewing prior accessible studies (literatures) as well as a methodological framework. It is believed that this perspective review study will serve as a way forward for other developing nations.
This study investigated the changing land use patterns and their impacts on ecosystem in the Teesta River Basin of northwestern Bangladesh. Although anthropocentric land use patterns, including agricultural land use, settlements, built areas, and waterbody loss, have been increasing in the Nilphamari district, by negatively affecting local ecosystems, they have not been identified by prior research. Limitations of contemporary literature motivated me to work on this crucial ground in the Teesta River Basin in Northwestern Bangladesh. This study applied a mixed research approach to identify the study objectives. Firstly, the land use and land cover (LULC) changes which occurred between 2000 and 2020 were detected using satellite imagery and supervised classification method. In addition to the detection of LULC changes, the study explored the people’s perceptions and experiences about the ecosystem changes resulted from the LULC changes over the last 20 years, conducting stakeholders’ consultations and household surveys utilizing a semi-structured questionnaire. The findings indicated that waterbodies in Nilphamari district have significantly decreased from 378 km2 in 2000 to 181 km2 in 2020. In the same way, the vegetation coverage has reduced 187 km2 between the years 2000 and 2020. On the contrary, agricultural lands (croplands) have increased from 595 km2 to 905 km2 and settlements have increased from 81 km2 to 206 km2 between the years 2000 and 2020. From the chi-square test, it was found a significant association between ecosystem change and biodiversity loss. It was further identified that waterbody decreases have significant impacts on aquatic ecosystems. The results of this study also indicated that due to the introduction of foreign tree species, local and native species have been significantly decreasing over the time. This study emphasizes the non-anthropocentric and inclusive land use policy implications for protecting life on land and preserving the aquatic ecosystem in Bangladesh.
Copyright © by EnPress Publisher. All rights reserved.