This paper is devoted to the discussion of dynamical properties of anisotropic dark energy cosmological model of the universe in a Bianchi type-V space time in the framework of scale covariant theory of gravitation formulated by Canuto et al.(phys.Rev.Lett.39:429,1977).A dark energy cosmological model is presented by solving the field equations of this theory by using some physically viable conditions. The dynamics of the model is studied by computing the cosmological parameters, dark energy density, equation of state(EoS) parameter, skewness parameters, deceleration parameter and the jerk parameter. This being a scalar field model gives us the quintessence model of the universe which describes a significant dark energy candidate of our accelerating universe. All the physical quantities discussed are in agreement with the recent cosmological observations.
This paper is concerned with the numerical solution of the mixed Volterra-Fredholm integral equations by using a version of the block by block method. This method efficient for linear and nonlinear equations and it avoids the need for spacial starting values. The convergence is proved and finally performance of the method is illustrated by means of some significative examples.
According to the United Nations, by 2050, about 68% of the world’s population will live in urban areas. This population increase requires environmental resilience and planning ability to reduce the negative environmental impacts associated with growth. In this scenario, life cycle analysis, whose standards were introduced by ISO 14000 series, is an essential tool. From this perspective, smart cities whose concern about environmental sustainability is paramount corroborating SDG 11. This study aims to provide a holistic view of environmental technologies developed by Brazilian inventors, focused on life cycle analysis, which promotes innovation by helping cities build greener, more efficient, resilient, and sustainable environments. The methodology of this article was an exploratory study and investigated the scenario of patents in the life cycle. 209 patent processes with Brazilian inventors were found in the Espacenet database. Analyzing each of the results individually revealed processes related to air quality, solid waste, and environmental sanitation. The review of patent processes allowed mapping of the technological advances linked to life cycle analysis, finding that the system is still little explored and can present competitive advantages for cities.
Copyright © by EnPress Publisher. All rights reserved.