This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
Recovery and resilience plan (RRP) approved by the European Commission fosters the development of lifelong learning programs to upgrade employees’ skills and knowledge for digital and green transitions. Within higher education, the field of information and communication technology (ICT) is also a priority area, so we compared the demographic variables of students enrolled in formal first-cycle higher education programs in ICT with those enrolled in lifelong ICT programs within the framework of the Advanced Computer Skills project funded by the RRP in Slovenia. The results show that formal first-cycle higher education in the field of ICT remains strongly male-dominated, whereas, among participants in lifelong learning, the percentage of females stands out. Bachelor programs in ICT are primarily enrolled by young people aged up to 24 years, while shorter university-based lifelong learning programs attract mostly older participants with higher completed formal education and from a broader range of prior educational backgrounds. Finally, when all three variables (gender, age and level of prior formal education) are considered, participants in lifelong learning are much more similar to part-time students than full-time bachelor ICT students, although the percentage of men in formal education is still predominant even in part-time studies. The research findings highlight the need for further efforts to offer lifelong learning in ICT to enable individuals to improve their employment prospects, progress in the workplace or even change their field of work.
Transit-oriented development is a concept that focuses on developing areas in and around transit nodes to create added value. The concept concentrates on integrating mass public transport networks with non-motorized modes of transport, minimizing the usage of motorized vehicles, and fostering the growth of dense, mixed-use areas with medium to high spatial intensity. This research examines the effects of altering the business model to create Transit Oriented Development (TOD) in Jakarta, contrasting it with PT Moda Raya Transports (PT MRT). We collected data by conducting in-depth interviews with experts and distributing questionnaires to seven respondents who work at this We used the Business Model Canvas (BMC) to identify business models and the internal resources needed for the implementation process. process. Therefore, six elements in BMC were used to conduct changes, and based on the results, RBV analysis was pe PT MRT needs to enhance its internal power to a competitive advantage level in order to effectively manage changes. We need to conduct further research on how the business model can influence the creation of transit-oriented development areas.
This study uses a Time-Varying Parameter Stochastic Volatility Vector Autoregression (TVP-SV-VAR) model to conduct an empirical analysis of the dynamic effects of China’s stock market volatility on the agricultural loan market and its channels. The results show that the relationship between stock market and agricultural loan market volatility is time varying and is always positive. The investor sentiment is a major conduit through which the effect takes place. This time-varying effect and transmission mechanism are most apparent between 2011 and 2017 and have since waned and stabilized. These have significant implications for the stable and orderly development of the agricultural loan market, highlighting the importance of the sound financial market system and timely policy, better market monitoring and early warning system and the formation of a mature and sound agricultural credit mechanism.
This study investigates the influence of service quality, destination facilities, destination image, and tourist satisfaction on tourist loyalty in the Pasar Lama Chinatown area of Tangerang City. Utilizing data from 400 respondents, the study employed structured questionnaires analyzed through descriptive statistics, reliability analysis, exploratory and confirmatory factor analysis, and structural equation modeling (SEM). The results reveal that service quality (β = 0.47, p < 0.001), destination facilities (β = 0.33, p < 0.001), and destination image (β = 0.4, p < 0.001) all significantly enhance tourist satisfaction, which in turn has a strong positive effect on loyalty (β = 0.58, p < 0.001). Direct paths also show that service quality, destination facilities, and destination image independently contribute to tourist loyalty. Bootstrapping confirms satisfaction’s mediating role between these factors and loyalty. Practical recommendations suggest prioritizing service quality improvements, facility enhancements, and a positive destination image to foster loyalty and promote tourism sustainability in Pasar Lama, China. These insights assist tourism managers in developing strategies to enhance long-term visitor retention and engagement in the area.
The article presents a study of the connectivity and integration of sovereign bond and stock markets in 10 BRICS+ countries in the context of crisis instabilities in 2019−2024. Financial markets are becoming more integrated, and an increasing share of public investments are carried out across borders, which increases not only the opportunities for participants, but also the risks of a new crisis. The work used data on central bank rates of the considered countries, yield indices of 10-year government bonds, gold and Brent oil prices. The methods include the analysis of exchange rate dynamics, connectivity estimates based on the multivariate concordance coefficient and two-factor Friedman rank variance analysis, VAR models, Granger predictability and cointegration. The objective of this study is to analyze the interrelationship and cointegration between the sovereign bond and equity markets of selected BRICS+ countries during crisis periods. Our findings indicate that market interrelationship intensifies during crises, which in turn amplifies volatility. Additionally, we observed that none of the economies within the BRICS+ group can be classified as fully integrated or entirely isolated markets. The disruption of the interrelationship in the sovereign bond markets of the group is primarily reflected in the inconsistency of dynamic changes between Russia, China, and India. During the global shock of 2019–2020, the crisis spread from China, followed by Indonesia, and later to the other countries of the group. The financial and debt markets of the sampled countries were able to quickly cope with the severe shocks of the COVID-2019 period. The 2022–2024 crisis, which lasted significantly longer, began in Russia before spreading to countries across Asia and Africa. By 2024, Russia’s sovereign bond yields showed a marked decline. The increased market volatility following 2022 disrupted the integration and interrelationship of the stock and debt markets within the BRICS+ countries.
Copyright © by EnPress Publisher. All rights reserved.