In this study, the entropy weight method, the α convergence model, the absolute β convergence model and the conditional β convergence model are used to evaluate the 31 provinces’ innovative potential in China from 2011 to 2022. It is found that the innovative potential in nationwide China and in various regions are all increasing year by year, and the innovative potential in the eastern region is obviously better than that in the central region and western region. No matter considering the influence of external factors or not, the gap of innovative potential among provinces in different regions will gradually expand over time, with the largest gap among provinces in the eastern region, followed by the central region and the smallest in the western region. The conclusion of this study is instructive to enhance the innovative potential of China and promote the balanced development of regional innovative potential in China.
Environmental regulation is globally recognized for its crucial role in mitigating environmental pollution and is vital for achieving the Paris Agreement and the United Nations Sustainable Development Goals. There is a current gap in the comprehensive overview of the significance of environmental regulation research, necessitating high-level insights. This paper aims to bridge this gap through an exhaustive bibliometric review of existing environmental regulation research. Employing bibliometric analysis, this study delineates publication trends, identifies leading journals, countries, institutions, and scholars. Utilizing VOSviewer software, we conducted a frequency and centrality analysis of keywords and visualized keyword co-occurrences. This research highlights current hotspots and central themes in the field, including “innovation”, “performance”, “economic growth”, and “pollution”. Further analysis of research trends underscores existing knowledge gaps and potential future research directions. Emerging topics for future investigation in environmental regulation include “financial constraints”, “green finance”, “green credit”, “ESG”, “circular economy”, “labor market”, “political uncertainty”, “digital transformation”, “exports” and “mediating effects”. Additionally, “quasi-natural experiments” and “machine learning” have emerged as cutting-edge research methodologies in this domain. The focus of research is shifting from analyzing the impact of environmental regulation on “innovation” to “green innovation” and from “emissions” to “carbon emissions”. This study provides a comprehensive and structured understanding, thereby guiding subsequent research in this field.
In developing countries, urban mobility is a significant challenge due to convergence of population growth and the economic attraction of urban centers. This convergence of factors has resulted in an increase in the demand for transport services, affecting existing infrastructure and requiring the development of sustainable mobility solutions. In order to tackle this challenge, it is necessary to create optimal services that promote sustainable urban mobility. The main objective of this research is to develop and validate a comprehensive methodology framework for assessing and selecting the most sustainable and environmentally responsible urban mobility services for decision makers in developing countries. By integrating fuzzy multi-criteria decision-making techniques, the study aims to address the inherent complexity and uncertainty of urban mobility planning and provide a robust tool for optimizing transportation solutions for rapid urbanization. The proposed methodology combines three-dimensional fuzzy methods of type-1, including AHP, TOPSIS and PROMETHEE, using the Borda method to adapt subjectivity, uncertainty, and incomplete judgments. The results show the advantages of using integrated methods in the sustainable selection of urban mobility systems. A sensitivity analysis is also performed to validate the robustness of the model and to provide insights into the reliability and stability of the evaluation model. This study contributes to inform decision-making, improves policies and urban mobility infrastructure, promotes sustainable decisions, and meets the specific needs of developing countries.
This study investigates the public’s perceptions of digital innovations in pharmacy, with a focus on health informatics and medication management. Despite the rapid development of these technologies, a comprehensive understanding of how various demographics perceive and interact with them is lacking hence, this research aims to bridge this gap by offering insights into public attitudes and the factors influencing the adoption of digital tools in pharmacy practice, as KSA population and healthcare professionals after Covid-19 has observed the significant potential of digital health. A cross-sectional survey involving 1132 participants was conducted, employing SPSS for data analysis to ensure precise and reliable results. The findings indicate general optimism about the potential of digital innovations to enhance healthcare outcomes but concerns about data privacy and usability significantly affect user acceptance. The researchers recommended tailored educational programs and user-centered design to facilitate the adoption of digital pharmacy innovations. Key contributions include the identification of ‘Ease of Use’ and ‘Data Security and Privacy’ as predominant factors in the adoption of digital health tools.
There is a growing emphasis on employee engagement in organizations and academia. It is reflected through an increasing number of academic publications that explores the link between human resource management practices and employee engagement. The present study investigates this relationship using bibliometric analysis. It is crucial to understand how human resource management practices influence employee engagement for creating a more productive and engaged workforce. The publications that focused on “human resource management” and “employee engagement” between 1996 and 2023 were analysed using the Biblioshiny package in R from the Web of Science (WoS) database. The analysis examined the existing research trends and also included comparative analysis across different geographic regions. It identified the emerging trends in human resource management research and the interconnectedness of various sub-disciplines within human resource management. This study offers a comprehensive analysis of the relationship between human resource management practices and employee engagement that revealed new avenues for future research and collaboration within the human resource management field. In other words, it will certainly provide valuable insights for future research agendas.
Clustering technics, like k-means and its extended version, fuzzy c-means clustering (FCM) are useful tools for identifying typical behaviours based on various attitudes and responses to well-formulated questionnaires, such as among forensic populations. As more or less standard questionnaires for analyzing aggressive attitudes do exist in the literature, the application of these clustering methods seems to be rather straightforward. Especially, fuzzy clustering may lead to new recognitions, as human behaviour and communication are full of uncertainties, which often do not have a probabilistic nature. In this paper, the cluster analysis of a closed forensic (inmate) population will be presented. The goal of this study was by applying fuzzy c-means clustering to facilitate the wider possibilities of analysis of aggressive behaviour which is treated as a heterogeneous construct resulting in two main phenotypes, premeditated and impulsive aggression. Understanding motives of aggression helps reconstruct possible events, sequences of events and scenarios related to a certain crime, and ultimately, to prevent further crimes from happening.
Copyright © by EnPress Publisher. All rights reserved.