This study investigates the viability and sustainability of proposed landfill sites based on the uncapacitated facility location problem framework utilising the SmartPLS4 Structural Equation Modelling. Investigating the Cape Coast Metropolis, a stratified sampling method selected 400 samples out of which 320 valid respondents were used as the basis for the analysis. Through statistical analysis, significant correlations were identified among community acceptance, environmental impact, facility accessibility, site sustainability, and operational efficiency. However, no significant correlation was found between economic viability and site sustainability. Furthermore, the proposed indirect mediation pathway from operational efficiency to site sustainability via facility accessibility was also statistically insignificant. Employing the use of SmartPLS4 approach in studying the application of uncapacitated facility location problem framework, deepens the understanding of landfill viability and sustainability dynamics. This research contributes to the environmental sciences and sustainability by providing insights into landfill management strategies and emphasising the importance of community engagement and environmental performance in achieving sustainable outcomes. Future research could refine the model by including additional variables like technological advancements and regulatory frameworks, conducting longitudinal studies to track landfill dynamics over time, and undertaking comparative studies across different geographical regions. This could provide insights into management approaches’ applicability. Interdisciplinary collaborations are recommended to address the multifaceted challenges of landfill sustainability.
As the second most polluting industry in the world, the fashion industry has a critical impact on the environment. The development of sustainable fashion is conducive to reducing the environmental pollution caused by the fashion industry. China has the largest consumer market in the world, and the Chinese government and major companies have made considerable contributions to the sustainable development of the fashion industry. However, research regarding young women’s attitudes towards this topic remains under-explored. This study interviewed 30 young women of different ages from different places in China. Based on the theory of planned behavior (TPB), a semi-structured interview was used as a data collection method, and thematic analysis was adopted for data analysis. This paper discusses young Chinese female consumers’ attitudes towards sustainable fashion and analyzes the motivating factors and hindrance factors affecting the consumption intentions of young Chinese female consumers towards sustainable fashion. The research found that young Chinese female consumers generally hold a positive and supportive attitude towards sustainable fashion. Consumers’ perceptions of sustainable fashion, their self-perceptions, and their level of green awareness all significantly impact their attitudes and purchase intentions toward sustainable fashion. Consumers feel low social pressure, and Chinese society demonstrates a high level of acceptance and praise for sustainable concepts. However, the lack of purchasing channels and choices for sustainable fashion in China and the high cost of sustainable fashion products discourage consumers from making purchases. This study will be beneficial as a reference when the Chinese government makes sustainable policies to guide consumers toward sustainable fashion consumption. This study helps enterprises select target markets in China and formulate sustainable fashion marketing strategies and targeted advertising. This study contributes to increasing consumer awareness of sustainable fashion, as well as providing reference and reflective value when consumers purchase sustainable fashion products. Finally, this study will help promote the development process of sustainable fashion in Chinese society, make contributions to reducing the waste of social resources, promoting the recycling of resources, and improving social conditions, and put forward specific solutions and feasible suggestions for the development of sustainable fashion in Chinese society.
In order to meet the Sustainable Development Goals (SDGs) of the United Nations and address the growing global concern for ecologically responsible activities, this study examines the role that French financial institutions play in financing a green future and promoting sustainable development (SD). Through semi-structured interviews with twelve participants from banks and Fintech companies, the research investigates their familiarity with green financing commitments to international organizations and associations, their views on the growth potential of green finance, and the provision of green finance products. Additionally, it explores the connection between green finance and its positive influence on SD. Data analysis was performed using NVivo 12. The findings highlight a strong commitment to green finance and sustainable practices among these institutions, emphasizing the significance of integration and utilization of green finance products across various sectors. This research emphasizes the crucial role of financial institutions in France in driving a greener and more sustainable future through green finance.
Sustainability is a top priority for municipal administrations, particularly in large urban centers where citizens rely on transportation for work, study, and daily errands. Public transportation faces a significant challenge beyond availability, performance, safety, and comfort: balancing the cost for the city with fare attractiveness for passengers. Meanwhile, bicycles, supported by public incentives due to their clean and healthy appeal, compete with public transit. In Curitiba, the integrated transport system has been consistently losing passengers, exacerbated by the pandemic and the rise in private vehicle usage. To address this, the city is expanding bicycle infrastructure and electric bike rental services, impacting public transit revenue, and prompting the need for financial compensation to maintain affordable fares for those reliant on public transport. Therefore, this study’s objective is to analyze the bicycle’s impact on public transportation, considering the impact of public policies on economic and social efficiency, not just ecological and environmental factors. Data from six main bus lines were collected and analyzed in two separate linear regression models to verify the effects of new bicycles in circulation, bus tariffs, and weather conditions on public transportation demand. Research results revealed a significant impact of bus tariffs and fuel prices on the number of new bicycles that are diverting passengers from public transportation. The discussion may offer a different perspective on public transport policies and improve city infrastructure investments to strategically change the urban form to address social and economic issues.
The effective allocation of resources within police patrol departments is crucial for maintaining public safety and operational efficiency. Traditional methods often fail to account for uncertainties and variabilities in police operations, such as fluctuating crime rates and dynamic response requirements. This study introduces a fuzzy multi-state network (FMSN) model to evaluate the reliability of resource allocation in police patrol departments. The model captures the complexities and uncertainties of patrol operations using fuzzy logic, providing a nuanced assessment of system reliability. Virtual data were generated to simulate various patrol scenarios. The model’s performance was analyzed under different configurations and parameter settings. Results show that resource sharing and redundancy significantly enhance system reliability. Sensitivity analysis highlights critical factors affecting reliability, offering valuable insights for optimizing resource management strategies in police organizations. This research provides a robust framework for improving the effectiveness and efficiency of police patrol operations under conditions of uncertainty.
This study investigated the utilization of Artificial Intelligence (AI) in the Recruitment and Selection Process and its effect on the Efficiency of Human Resource Management (HRM) and on the Effectiveness of Organizational Development (OD) in Jordanian commercial banks. The research aimed to provide solutions to reduce the cost, time, and effort spent in the process of HRM and to increase OD Effectiveness. The research model was developed based on comprehensive review of existing literature on the subject. The population of this study comprised HR Managers and Employees across all commercial banks in Jordan, and a census method was employed to gather 177 responses. Data analysis was conducted using Amos and SPSS software packages. The findings show a statistically significant positive impact of AI adoption in the Recruitment and Selection Process on HR Efficiency, which in turn positively impacted OD Effectiveness. Additionally, the study indicated that the ease-of-use of AI technologies played a positive moderating role in the relationship between the Recruitment and Selection Process through AI and HR Efficiency. This study concludes that implementing AI tools in Recruitment is vital through improving HR Efficiency and Organization Effectiveness.
Copyright © by EnPress Publisher. All rights reserved.