Climate change is the most important environmental problem of the 21st century. Severe climate changes are caused by changes in the average temperature and rainfall can affect economic sectors. On the other hand, the impact of climate change on countries varies depending on their level of development. Therefore, the aim of this paper is to investigate the relationship between climate changes and economic sectors in developed and developing countries for the period 1990–2021. For this purpose, a novel approach based on wavelet analysis and SUR model has been used. In this case, first all variables are decomposed into different frequencies (short, medium and long terms) using wavelet decomposition and then a SUR model is applied for the examination of climate change effects on agriculture, industry and services sectors in developed and developing countries. The findings indicate that temperature and rainfall have a significant negative and positive relationship with the agriculture, industry and services sectors in developed and developing countries, respectively. But severity of the negative effects is greater in the agricultural and industrial sectors in all frequencies (short, medium and long terms) compared to service sector. Furthermore, the severity of the positive effects is greater in the agricultural sector in all frequencies of developing countries compared to the industrial and services sectors. Finally, developing countries are more vulnerable to climate change in all sectors compared to developed countries.
With the increasing climate change crisis, the ongoing global energy security challenges, and the prerequisites for the development of sustainable and affordable energy for all, the need for renewable energy resources has been highlighted as a global aim of mankind. However, the worldwide deployment of renewable energy calls for large-scale financial and technological contributions which many States cannot afford. This exacerbates the need for the promotion of foreign investments in this sector, and protecting them against various threats. International Investment Agreements (IIAs) offer several substantive protections that equally serve foreign investments in this sector. Fair and Equitable Treatment (FET) clauses are among these. This is a flexible standard of treatment whose boundaries are not clearly defined so far. Investment tribunals have diverse views of this standard. Against this background, this article asks: What are the prominent international renewable energy investment threats, and how can FET clauses better contribute to alleviating these concerns? Employing a qualitative method, it analyses the legal aspects and properties of FET and concludes that the growing security and regulatory threats have formed a sort of modern legitimate expectations on the part of renewable energy investors who expect host states to protect them against such threats. Hence, IIAs and tribunals need to uphold a definite and broadly applicable FET approach to bring more consistency and predictability to arbitral awards. This would help deter many unfavourable practices against investments in this sector.
This research aimed to investigate the role of humanizing leadership in enhancing the effectiveness of change management strategies within organizations. Specifically, it focused on how humanizing leadership influences change outcomes and the extent to which organizational culture moderates this relationship. The study addressed critical questions regarding the impact of leadership behaviors, such as model vulnerability, emotional intelligence, open communication, and psychological safety on effective change management and employee performance. A quantitative approach was employed to provide a comprehensive analysis of the phenomena. Quantitative data were collected from a sample of 325 employees through surveys that measured perceptions of Humanizing leadership behaviors, organizational culture, and change outcomes. Data was analyzed by IBM SPSS 26.0. The findings revealed that humanizing leadership behaviors significantly enhances the success of change initiatives, primarily through improved employee engagement and reduced resistance. Organizational culture was found to play a moderating role, amplifying the positive effects of empathetic and inclusive leadership practices. The study provides actionable recommendations for organizational leaders and managers to foster a culture that supports humanizing leadership. By adopting leadership strategies that emphasize vulnerability, empathy, and inclusivity, organizations can enhance their adaptability and resilience against the backdrop of continuous change. These findings are particularly valuable for enhancing managerial practices and informing policy within corporate settings.
The purpose of Vehicular Ad Hoc Network (VANET) is to provide users with better information services through effective communication. For this purpose, IEEE 802.11p proposes a protocol standard based on enhanced distributed channel access (EDCA) contention. In this standard, the backoff algorithm randomly adopts a lower bound of the contention window (CW) that is always fixed at zero. The problem that arises is that in severe network congestion, the backoff process will choose a smaller value to start backoff, thereby increasing conflicts and congestion. The objective of this paper is to solve this unbalanced backoff interval problem in saturation vehicles and this paper proposes a method that is a deep neural network Q-learning-based channel access algorithm (DQL-CSCA), which adjusts backoff with a deep neural network Q-learning algorithm according to vehicle density. Network simulation is conducted using NS3, the proposed algorithm is compared with the CSCA algorithm. The find is that DQL-CSCA can better reduce EDCA collisions.
Pattaya City is a well-known tourist destination in Thailand, famous for its beautiful beachfront, lively nightlife, and stunning natural scenery. Since 2019, the Eastern Special Development Zone Act, the so-called EEC (Eastern Economic Corridor), has positioned the city as a focal point for Meetings, Incentives, Conferences, and Exhibitions (MICE), boosting its tourism-driven economy. Infrastructure improvements in the region have accelerated urban development over the past decade. However, it is uncertain whether this growth primarily comes from development within existing areas or the expansion of urban boundaries and what direction future growth may take. To investigate this, research using the Cellular Automata-Markov model has been conducted to analyze land use changes and urban growth patterns in Pattaya, using land use data from the Department of Land for 2013 and 2017. The findings suggest an upcoming city expansion along the motorway, indicating that infrastructure improvements could drive rapid urbanization in coastal areas. This urban expansion emphasizes the need for urban management and strategic land use planning in coastal cities.
Using generative artificial intelligence systems in the classroom for law case analysis teaching can enhance the efficiency and accuracy of knowledge delivery. They can create interactive learning environments that are appropriate, immersive, integrated, and evocative, guiding students to conduct case analysis from interdisciplinary and cross-cultural perspectives. This teaching method not only increases students’ interest and participation in learning but also helps cultivate their interdisciplinary thinking and global vision. However, the application of generative artificial intelligence systems in legal education also faces some challenges and issues. If students excessively rely on these systems, their ability to think independently, make judgments, and innovate may be weakened, leading to over-trust in machines and reinforcement of value biases. To address these challenges and issues, legal education should focus more on cultivating students’ questioning skills, self-analysis abilities, critical thinking, basic legal literacy, digital skills, and humanistic spirit. This will enable students to respond to the challenges brought by generative artificial intelligence and ensure their comprehensive development in the new era.
Copyright © by EnPress Publisher. All rights reserved.