The Western capitalist system is an important part of the economy and society of the contemporary world, and it has played a huge role in the past few centuries. Nonetheless, with the continuous development of globalization, technological revolution and social change, the Western capitalist system is also facing a series of difficulties and new changes. This paper aims to explore the dilemma facing the Western capitalist system today, and to analyze and discuss the new changes.
To achieve sustainable development, detailed planning, control and management of land cover changes that occur naturally or by human caused artificial factors, are essential. Urban managers and planners need a tool that represents them the information accurate, fast and in exact time. In this study, land use changes of 3 periods, 1994-2002, 2002-2009, 2009-2015 and predictions of 2009, 2015 and 2023 were assessed. In this paper, Maximum Likelihood method was used to classify the images, so that after evaluation of accuracy, amount of overall accuracy for images of 2013 was 85.55% and its Kappa coefficient was 80.03%. To predict land use changes, Markov-CA model was used after assessing the accuracy, and the amount of overall accuracy for 2009 was 82.57% and for 2015 was 93.865%. Then web GIS application was designed via map server application and evoked shape files through map file and open layers to browser environment and for design of appearance of website CSS, HTML and JavaScript languages were used. HTML is responsible for creating the foundation and overall structure of webpage but beautifying and layout design on CSS.
In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.
The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
To rejuvenate the country through science and education, the university is an important position of China's personnel training system and a base for the production of human resources in our country. The higher education in the popularization stage has made a profound change in the employment mode of graduates, which makes the discipline structure and personnel training mode of colleges and universities adapt to the requirements of the market and society. Based on the employment situation of colleges and universities, this paper analyzes the significance, dilemma and suggestions of constructing a feedback mechanism for the quality of graduates, so as to help colleges and universities cultivate more high-quality talents.
Copyright © by EnPress Publisher. All rights reserved.