This study evaluates the influence of quality certificates on sustainable food production in Poland, considering economic, social, and environmental dimensions. Analyzing 25 different certificates, the research explores their criteria, procedures, and costs across various food product categories, including meat, fish, and plant-based products. The study provides a detailed review of certification processes, from initiation to audits and inspections. It identifies both commonalities and differences among certificates, each addressing unique aspects such as environmental impact, worker rights, and product origins. Despite the diversity in standards and procedures, the study underscores the need for standardized international criteria to improve transparency and meet consumer expectations, highlighting the significant role of quality certificates in advancing sustainable food production.
The study has formulated the objective of synthesizing the extent to which technological barriers intervene in the transparency and effectiveness of public management (PM). Methodologically, the study was of a fundamental or basic nature, with a systematic review design, the databases of Scopus (369), SciELO (2), Web of Science (184) were explored, after the review process a set of 22 articles was available. The registration was made in an Excel table where the main data of the articles were included. 32% of the articles selected for the analysis of the evidence are from the period 2020, 27% were from 2022 and 18% from the year 2023; as far as origin is concerned, 14% of the articles come from Peru and 9% from Australia, Brazil, South Korea, Spain and Indonesia. In summary, the study points out that government institutions are making progress in digitizing and improving the citizen experience through electronic services, but they face challenges in areas such as resource management, the low adoption of advanced technologies such as blockchain and artificial intelligence, as well as the lack of transparency in PM. Despite this, it is highlighted that e-government improves citizen satisfaction, and the need to invest in digital innovation, training and overcoming technological barriers to achieve an effective transformation in state administration and promote a more inclusive and advanced society is emphasized.
The economy, unemployment, and job creation of South Africa heavily depend on the growth of the agricultural sector. With a growing population of 60 million, there are approximately 4 million small-scale farmers (SSF) number, and about 36,000 commercial farmers which serve South Africa. The agricultural sector in South Africa faces challenges such as climate change, lack of access to infrastructure and training, high labour costs, limited access to modern technology, and resource constraints. Precision agriculture (PA) using AI can address many of these issues for small-scale farmers by improving access to technology, reducing production costs, enhancing skills and training, improving data management, and providing better irrigation infrastructure and transport access. However, there is a dearth of research on the application of precision agriculture using artificial intelligence (AI) by small scale farmers (SSF) in South Africa and Africa at large. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Bibliometric analysis guidelines were used to investigate the adoption of precision agriculture and its socio-economic implications for small-scale farmers in South Africa or the systematic literature review (SLR) compared various challenges and the use of PA and AI for small-scale farmers. The incorporation of AI-driven PA offers a significant increase in productivity and efficiency. Through a detailed systematic review of existing literature from inception to date, this study examines 182 articles synthesized from two major databases (Scopus and Web of Science). The systematic review was conducted using the machine learning tool R Studio. The study analyzed the literature review articled identified, challenges, and potential societal impact of AI-driven precision agriculture.
Copyright © by EnPress Publisher. All rights reserved.