The objective of the present study is to observe the surface morphology, structure and elemental composition of the ash particles produced from some thermal power stations of India using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). This information is useful to better understand the ash particles before deciding its utility in varied areas.
Phytomediation is an environmentally friendly green rehabilitation technology that is often incorporated with an application to improve calcium peroxide and phytohormones required for the growth of agricultural plants with the expectation to improve the effectiveness of plant rehabilitation. This study mainly consists of two parts: (1) water culture experiment and (2) pot culture experiment. In the water culture experiment, we attempt to understand the influence of the addition of calcium peroxide, phytohormones (IAA and GA3) and a chelating agent on the growth of sunflower plants. However, in the pot culture experiment, when hormones and the chelating agent EDTA are introduced to different plant groups at the same time, if the nutrition in the water required by plants is not available, the addition of the hormone cannot negate the toxicity caused by EDTA. In terms of calcium peroxide, due to quick release of oxygen in water, this study fails to apply calcium peroxide to the water culture experiment.
When the pot culture experiment is used to examine the influence of hormones at different concentration levels on the growth of sunflowers, GA3 10-8 M is reported to have the optimal effectiveness, followed by IAA 10-8 M; IAA 10-12 M has the lowest effectiveness. According to an accumulation analysis of heavy metals at different levels, GA3 concentrates in leaves to transport nutrition in soil to leaves. This results in an excellent TF value of 2.329G of GA3 than 1.845 of the control group indicating that the addition of the hormone and chelating agent to GA3 increases the TF value and the chelating agent is beneficial to the sunflower plant. If we examine phytoattenuation ability, the one-month experiment was divided into three stages for ten days each. The concentration level of heavy metals in the soil at each stage dropped continuously while that of the control group decreased from 31.63 mg/kg to 23.96 mg/kg, GA3 from 32.09 mg/kg to 23.04 mg/kg and EDTA from 30.65 mg/kg to 25.93 mg/kg indicating the quickest growth period of the sunflowers from the formation of the bud to blossom. During the stage, the quick upward transportation of nutrition results in quick accumulation of heavy metals; the accumulated speed of heavy metals is found higher than that of directly planted plants. This study shows an improvement in the effectiveness of the addition of hormones on plant extraction and when rehabilitation is incorporated with sunflowers with the beginning bud formation, better treatment effectiveness can be reached.
We have studied the effect of the series resistance on the heating of the cathode, which is based on carbon nanotubes and serves to realize the field emission of electrons into the vacuum. The experiment was performed with the single multi-walled carbon nanotube (MCNT) that was separated from the array grown by CVD method with thin-film Ni-Ti catalyst (nickel 4 nm/Ti 10 nm). The heating of the cathode leads to the appearance of a current of the thermionic emission. The experimental voltage current characteristic exhibited the negative resistance region caused by thermal field emission. This current increases strongly with increasing voltage and contributes to the degradation of the cold emitter. The calculation of the temperature of the end of the cathode is made taking into account the effect of the phenomenon that warms up and cools the cathode. We have developed a method for processing of the emission volt-ampere characteristics of a cathode, which relies on a numerical calculation of the field emission current and the comparison of these calculations with experiments. The model of the volt-ampere characteristic takes into account the CNT’s geometry, properties, its contact with the catalyst, heating and simultaneous implementation of the thermionic and field emission. The calculation made it possible to determine a number of important parameters, including the voltage and current of the beginning of thermionic emission, the temperature distribution along the cathode and the resistance of the nanotube. The phenomenon of thermionic emission from CNTs was investigated experimentally and theoretically. The conditions of this type emission occurrence were defined. The results of the study could form the basis of theory of CNT emitter’s degradation.
Plasma thermal gasification can be one of the most relevant and environmentally friendly technologies for waste treatment and has gained interest for its use in thethermos-conversion of biomass. In this perspective, the objective of this study is to evaluate the gasification of sugarcane bagasse by studying the effective areas of operation of this process and to establish a comparison with conventional autothermal gasification. A thermochemical equilibrium model was used to calculate the indicators that characterize the performance of the process on its own and integrated with a combined cycle. As a result, it was obtained that plasma and gasification of bagasse is technically feasible for the specific net electrical production of 4 MJ with 30 % electrical efficiency, producing a gas with higher calorific value than autothermal gasification. The operating points where the electrical energy production and the cold gas efficiency reach their highest values were determined; then the effects of the operational parameters on these performance indicators were analyzed.
In November 2018, the sample plot survey method was used to analyze the population characteristics of Lithocarpus polystachyus in the natural secondary forest with different disturbance intensity in Jianning, Fujian Province, and compile its population static life table. The results showed that the number of individuals in the population was small, but it was clustered. With the increase of interference intensity, the first and second age seedlings and young trees decreased. The population types affected by human disturbance are all lacking level V trees, and the population type belongs to primary population (N1); The undisturbed population lacks level I and II seedlings and young trees, but there are level V trees, and the population type belongs to medium decline population (S2). In general, all populations of L. polystachyus are unstable and belong to the transitional type. In the static life table, the mortality of level I and II seedlings and young trees is high, the survival rate has a small peak in level III and IV, and then the survival rate decreases rapidly, and the average life expectation of level II is the highest. It shows that artificial conservation measures and appropriate space re-lease are needed to maintain the stability of the population.
The use of bioproducts, economically viable, are of extreme importance in the protection and stimulation of germination in vegetable crops. This work evaluated the effect of the microorganisms Azospirillum brasiliense, Bacillus sub-tilis, Trichoderma harzianum and the commercial seed treatment product (Fipronil + Pilaclostrobin and Methyl Thiophanate) on seeds and seedlings of lettuce (Lactuca sativa), carrot (Daucus carota) and tomato (Solanum lycopersicum). The seeds were inoculated before being submitted to the germination test. The chemical treatment proved ineffective in protecting the seed of all crops and stimulating germination. T. harzianum increased the germination index of lettuce seeds, had better values in root system size in tomato crop and stimulated radicle emission in carrot. B. subtilis stood out in dry matter accumulation in tomato crop. The microorganisms B. subtilis and T. harzianum present potential for vegetable seed treatment.
Copyright © by EnPress Publisher. All rights reserved.