Nowadays, customer service in telecommunications companies is often characterized by long waiting times and impersonal responses, leading to customer dissatisfaction, increased complaints, and higher operational costs. This study aims to optimize the customer service process through the implementation of a Generative AI Voicebot, developed using the SCRUMBAN methodology, which comprises seven phases: Objectives, To-Do Tasks, Analysis, Development, Testing, Deployment, and Completion. An experimental design was used with an experimental group and a control group, selecting a representative sample of 30 customer service processes for each evaluated indicator. The results showed a 34.72% reduction in the average time to resolve issues, a 33.12% decrease in service cancellation rates, and a 97% increase in customer satisfaction. The implications of this research suggest that the use of Generative AI In Voicebots can transform support strategies in service companies. In conclusion, the implementation of the Generative AI Voicebot has proven effective in significantly reducing resolution time and markedly increasing customer satisfaction. Future research is recommended to further explore the SCRUMBAN methodology and extend the use of Generative AI Voicebots in various business contexts.
This research presents a novel approach utilizing a self-enhanced chimp optimization algorithm (COA) for feature selection in crowdfunding success prediction models, which offers significant improvements over existing methods. By focusing on reducing feature redundancy and improving prediction accuracy, this study introduces an innovative technique that enhances the efficiency of machine learning models used in crowdfunding. The results from this study could have a meaningful impact on how crowdfunding campaigns are designed and evaluated, offering new strategies for creators and investors to increase the likelihood of campaign success in a rapidly evolving digital funding landscape.
Balancing broad learning outcomes in graduate programs with detailed classroom learning outcomes is increasingly crucial in education systems. This study employs a qualitative paradigm through a case study method to address the gap between learning outcomes at the graduate program level and those at the course level. Using the ESSENTIA CURRICULUM framework—a curriculum design methodology derived from software engineering practices—we propose an innovative and adaptable approach for aligning program-wide and course-specific learning outcomes. The ESSENTIA CURRICULUM, named for its focus on the “essence of the curriculum”, is applied to the ICT for Research course within the M.Sc. program in University Teaching at the University of Nariño. This framework fosters a consistent educational journey centered on learning achievements and demonstrates its effectiveness through a comprehensive self-assessment process and stakeholder feedback. The implications of this research are twofold: it highlights the potential of adopting interdisciplinary methodologies for curriculum design and provides a scalable and alternative strategy for harmonizing learning outcomes across diverse educational contexts. By bridging principles from software engineering into education, this novel approach offers new avenues for improving curriculum coherence and applicability.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
Aims of this study clarify the intrinsic value of Galileo’s law of inertia, which holds significance in the history of science, and the process through which such law of inertia was formed, for educational purposes, and explores a possible conversion of this intrinsic value into an environmental ethical value. The research methodology is to establish a value schema and, through its application, to explore the changes in the active intrinsic value principle of Galileo’s law of inertia based on the history of science. This study derived the following results: First, Galileo professed the value he assigned and discovered as a complete experience to support heliocentrism. Second, he realized his personal religious ideal, or in other words, the ideal of life as a whole. Third, the overall process is to feel a comprehensive and integral expansion of the self. Above all, it shows that the principle of active intrinsic value based on Galileo’s experimental activities has changed and expanded throughout the history of science. One internalizes one’s faith in accordance with the activity-centered value. Only when combined with aesthetic experience does education make one ethical. As general school education does not necessarily guarantee ethics, we must lead our values education toward ecocentric ethics education, which highlights beauty. It shows that these active intrinsic values also extend to ethical values.
Copyright © by EnPress Publisher. All rights reserved.