Despite the surge of publication of chatbots in the recent years in the field of education, we have little to know how this area has been researched so far, and the metrics of this type of research is still not known. To address such gap, this article offers a descriptive bibliometric study of chatbot research in education, aiming at presenting bibliometric analysis on articles on chatbots in education that were published in journals indexed in the Web of Science (WOS) database specifically Social Science Citation Index (SSCI) and Science Citation Index Expanded (SCIE) between 2016 and 2023. Descriptive bibliometric analysis was used to examine the data gathered from the chosen publications. including the annual number of articles and citations, the most productive author, countries with the highest publication output, productive affiliations, funding organizations, and publication sources. The bulk of the articles on chatbots in education, according to our dataset, were published between 2016 and 2023. The United States of America tops the list of countries regarding research productivity. The United Kingdom and China were ranked as most second and third productive countries, in terms of publication outputs. “Luke Kutszik Fryer emerged as the most productive author in this research domain in terms of the number of publications.” The University of Hong Kong had the highest number of publications among affiliations, indicating their significant contribution to the field. Additionally, the journal “Computers in Human Behavior” stood out with the highest number of publications per year, highlighting its relevance in publishing research on chatbots in education. This research offers valuable insights and a roadmap for prospective researchers, pinpointing critical areas where success can be attained in the study of chatbots in education.
Introduction: In contemporary healthcare education, the integration of technology has emerged as an essential factor in enhancing the efficiency and efficacy of training methodologies. Particularly within the domain of cardiopulmonary resuscitation (CPR) training, the adoption of technology-driven approaches holds considerable potential for enriching the skills and proficiencies of healthcare practitioners. Through the utilization of innovative technologies, such as simulation software and leveraging smartphones as primary tools, CPR training programs can be customized to provide immersive, interactive, and authentic learning experiences. This study aims to validate a comprehensive CPR training module tailored explicitly for healthcare professionals, to integrate it into smartphones as a medium for delivering CPR training. Methods: Two validity tests, namely content validity and face validity were conducted to evaluate the validity of the Smart-CPR training module. A self-constructed measurement scale was utilized to assess four parameters: consistency, representativeness, clarity, and relevancy. Content validity employed the content validity ratio, with scores ranging between 1 and −1, indicating the level of consensus among experts regarding the significance of each item. Face validity was assessed using two indices: the item face validity index and the scale face validity index. Ratings of 3 or 4 were given a score of 1, while ratings of 1 or 2 received a score of 0. Result: The content validity shows that CVI values for ‘consistency’ and ‘representativeness’ were 0.99 for the module and questionnaire, and 0.96 and 0.97, respectively. ‘Clarity’ scored 0.99 for the module and 0.96 for the questionnaire, while ‘relevance’ achieved 0.99 for both. All 44 items exceeded the 0.83 threshold for face validity. The Lawshe’s content validity ratio (CVR) and content validity index (CVI) value were used to evaluate the content validity of both the CRSTP module and questionnaire, with CVR values result ranging from 0.80 to 0.99 across dimensions. These findings demonstrate robust content validity. Additionally, high CVI scores, mostly exceeding 0.95, suggest favorable outcomes and indicate no need for revisions. In face validity method, all 44 items surpassed the minimum threshold of 0.83, signifying a favourable outcome. Thus, all items were deemed acceptable. Conclusion: The Smart-CPR training module and questionnaires were meticulously developed to meet both face and content validity standards. All 44 items demonstrated appropriate levels of validity, ensuring they effectively enhance and maintain CPR competency among healthcare providers and potentially benefit the broader community. The positive results of the Smart-CPR training module confirm the high validity of the CPR competency assessment. Content validity, evaluated by experts, received a perfect score, demonstrating agreement on the relevance of each module component. Similarly, face validity, assessed by healthcare professionals, also received a flawless score, indicating consensus on the module’s clarity and relevance. These findings validate the module’s effectiveness in teaching CPR techniques to a diverse audience and ensuring compliance with established standards. With such strong validity, digitizing the module becomes more straightforward, facilitating easier sharing and use across digital platforms. Ultimately, the module’s high validity facilitates its integration into digital platforms, thereby enhancing CPR education and improving outcomes during real emergencies.
The sustainability of the creative industry through creative-based tourism in the Laweyan Tourism Village requires the support of a sustainable and inclusive development model for local communities. This research aims to present the design of a tourist village development model that applies the eco-cultural city concept as a Surakarta City Perspective through creative-based tourism towards creative industries. This research uses a qualitative approach with a descriptive exploratory method. Data collection techniques use interviews with key informants. Empirical observation using cultural mapping as identification of physical mapping of spatial layout, build ings and environment, as well as cultural landscapes for tangible and intangible cultural assets of the community in the local landscape in the Laweyan tourist village. Content analysis is applied as a research data analysis method. The research results provide an overview of the design of the creative-based tourism village development model towards a sustainable creative industry including aspects attraction, accessibility, amenities, and ancillary, and green tourism. Model design requires commitment and participation from the government and private sector in collaborating with sustainable tourist village development forums.
Artificial Intelligence (AI) has become a pivotal force in transforming the retail industry, particularly in the online shopping environment. This study investigates the impact of various AI applications—such as personalized recommendations, chatbots, predictive analytics, and social media engagement—on consumer buying behaviors. Employing a quantitative research design, data was collected from 760 respondents through a structured online survey. The snowball sampling technique facilitated the recruitment of participants, focusing on diverse demographics and their interactions with AI technologies in online retail. The findings reveal that AI-driven personalization significantly enhances consumer purchase intentions and satisfaction. Multiple regression analysis shows that AI personalization (β = 0.35, p < 0.001) has the most substantial impact on purchase intention, followed by chatbot effectiveness (β = 0.25, p < 0.001), predictive analytics (β = 0.20, p < 0.001), and social media engagement (β = 0.15, p < 0.01). Similarly, AI personalization (β = 0.30, p < 0.001), predictive analytics (β = 0.25, p < 0.001), and chatbot effectiveness (β = 0.20, p < 0.001) significantly influence consumer satisfaction. The hierarchical regression analysis underscores the importance of ethical considerations, showing that ethical and transparent use of AI increases consumer trust and engagement. Model 1 explains 45% of the variance in consumer behavior (R2 = 0.45, F = 154.75, p < 0.001), while Model 2, incorporating ethical concerns, explains an additional 10% (R2 = 0.55, F = 98.25, p < 0.001). This study highlights the necessity for retailers to leverage AI technologies ethically and effectively to gain a competitive edge, improve customer satisfaction, and drive long-term success. Future research should explore the long-term impacts of AI on consumer behavior and the integration of emerging technologies such as augmented reality and the Internet of Things (IoT) in retail.
The scientific objective of this study is to demonstrate how a hybrid photovoltaic-grid-generator microsystem responds under transient regime to varying loads and grid disconnection/reconnection. The object of the research was realized by acquiring the electrical magnitudes from the three PV systems (25 kW, 40 kW, and 60 kW) connected to the grid and the consumer (on-grid), during the technological process where the load fluctuated uncontrollably. Similar recordings were also made for the transient regime caused by the grid disconnection, diesel generator activation (450 kVA), its synchronization with PV systems, power supply to receivers, and grid voltage restoration after diesel generator shutdown. Analysis of the data focused on power supply continuity, voltage stability, and frequency variations. Findings indicated that on-grid photovoltaic systems had a 7.9% maximum voltage deviation from the standard value (230 V) and a frequency variation within ±1%. In the transient period caused by the grid disconnection and reconnection, a brief period with supply interruption was noted. This study contributes to the understanding of hybrid system behavior during transient regimes.
Cities play a key role in achieving the climate-neutral supply of heating and cooling. This paper compares the policy frameworks as well as practical implementation of smart heating and cooling in six cities: Munich, Dresden and Bad Nauheim in Germany; and Jinan, Chengdu and Haiyan in China, to explore strategies to enhance policy support, financial mechanisms, and consumer engagement, ultimately aiming to facilitate the transition to climate-neutral heating and cooling systems. The study is divided into three parts: (i) an examination of smart heating and cooling policy frameworks in Germany and China over the past few years; (ii) an analysis of heating and cooling strategies in the six case study cities within the context of smart energy systems; and (iii) an exploration of the practical solutions adopted by these cities as part of their smart energy transition initiatives. The findings reveal differences between the two countries in the strategies and regulations adopted by municipal governments as well as variations within each country. The policy frameworks and priorities set by city governments can greatly influence the development and implementation of smart heating and cooling systems. The study found that all six cities are actively engaged in pioneering innovative heating and cooling projects which utilise diverse energy sources such as geothermal, biomass, solar, waste heat and nuclear energy. Even the smaller cities were seen to be making considerable progress in the adoption of smart solutions.
Copyright © by EnPress Publisher. All rights reserved.