An extensive assessment index system was developed to evaluate the integration of industry and education in higher vocational education. The system was designed using panel data collected from 31 provinces in China between 2016 and 2022. The study utilized the entropy approach and coupled coordination degree model to examine the temporal and spatial changes in the level of growth of the integration of industry and education in higher vocational education, as well as the factors that impact it. In order to examine how the integration of industry and education in higher vocational education develops over time and space, as well as the factors that affect it, we utilized spatial phasic analysis, Tobit regression model, and Dagum’s Gini coefficient. The study’s findings suggest that between 2016 and 2022, the integration of industry and education in higher vocational education showed a consistent improvement in overall development. Nevertheless, there are still significant regional differences, with certain areas showing limited levels of integration, while the bulk of regions are either in a state of low integration with high clustering or low integration with low clustering. Most locations showed either a “low-high” or “low-low” level of agglomeration, indicating a significant degree of spatial concentration, with a clear trend of higher concentration in the east and lower concentration in the west. The progress of industrial structure and the degree of regional economic development have a substantial impact on the amount of integration of industry and education in higher vocational education. There is a notable increase in the amount of integration between industry and education in higher vocational education, which has a favorable effect. Conversely, the local employment rate has a substantial negative effect on this integration. Moreover, the direct influence of industrial structure optimization is restricted. The Gini coefficient of the development level of integration of industry and education in higher vocational education exhibits a slight rising trend. Simultaneously, there is a varying increase in the Gini coefficient inside the group and a decrease in the Gini coefficient between the groups. The disparities in the level of integration between Industry and Education in the provincial area primarily stem from inter-group variations across the locations. To promote the integration of industry and education in higher vocational education, it is recommended to strengthen policy support and resource allocation, address regional disparities, improve professional configuration, and increase investment in scientific and technological innovation and talent development.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
The study’s objective is to identify the challenges and limitations faced by the current vocational education system in preparing graduates in the era of the industrial revolution in the evolving job market in Tangerang, Indonesia. The study primarily examines vocational high schools and adopts a quantitative and quasi-experimental research approach, using control groups to conduct pre- and posttests. The experimental group experiences demonstrations, whereas the control group receives explanations. Instructors employ a blend of demonstration and explanation techniques to explain equipment operation before allowing students to engage in vocational training. The study, led by students in various engineering fields, evaluates technical competencies, work ethics, and foundational knowledge using tests and observations. Job preparation is assessed using the minimal completeness criteria (MCC), which focuses on the importance of proper knowledge, attitudes, and skills. The results indicate that vocational teachers have the potential to play a pivotal role in introducing cutting-edge, technology-based teaching methods, therefore enabling students to make well-informed decisions about their careers. This research enhances vocational education by incorporating practical skills and attitudes with academic knowledge, effectively addressing the changing requirements of the work market.
Earnings disparities in South Africa, and specifically the Eastern Cape region are influenced by a complex interplay of historical, socio-economic, and demographic factors. Despite significant progress since the end of apartheid, persistent disparities in earnings continue to raise questions about the effectiveness of policies aimed at reducing inequality and promoting equitable social system. Individual-level dataset from the 2021 South African general household survey were subjected to exploratory analysis, while Heckman selection model was used to investigate the determinants of earnings disparities in the study area. The results showed that majority of the population are not working for a wage, commission or salary, which also pointed to the gravity of unemployment situation in the area of study. Most of the working population (both male and female) are lowest earners (R ≤ 10,000), and this also cuts across all age-group categories. Majority of working population have no formal education, are drop out, or have less than grade-12 certificate, and very few working populations with higher education status were found in the moderate and relatively high earnings categories. While many of the working population are engaged in the informal sector, those in the formal sector are in the lowest earners group. Compared to any other race, the Black African group constituted the majority of non-wage earners, and most in this group were found in the lowest earners group. Some of the working population who were beneficiaries of social grants and medical aids scheme were found in the lowest, low, and moderate earnings categories. The findings significantly isolated the earnings-effect of age, marital status, gender, race, education, geographic indicators, employment sector, and index of health conditions and disabilities. The study recommends interventions addressing racial, gender, and geographic wage gaps, while also emphasizing the importance of equitable access to education, health infrastructure, and skills development.
Copyright © by EnPress Publisher. All rights reserved.