Balancing broad learning outcomes in graduate programs with detailed classroom learning outcomes is increasingly crucial in education systems. This study employs a qualitative paradigm through a case study method to address the gap between learning outcomes at the graduate program level and those at the course level. Using the ESSENTIA CURRICULUM framework—a curriculum design methodology derived from software engineering practices—we propose an innovative and adaptable approach for aligning program-wide and course-specific learning outcomes. The ESSENTIA CURRICULUM, named for its focus on the “essence of the curriculum”, is applied to the ICT for Research course within the M.Sc. program in University Teaching at the University of Nariño. This framework fosters a consistent educational journey centered on learning achievements and demonstrates its effectiveness through a comprehensive self-assessment process and stakeholder feedback. The implications of this research are twofold: it highlights the potential of adopting interdisciplinary methodologies for curriculum design and provides a scalable and alternative strategy for harmonizing learning outcomes across diverse educational contexts. By bridging principles from software engineering into education, this novel approach offers new avenues for improving curriculum coherence and applicability.
Improving the practical skills of Science, Technology, Engineering and Mathematics (STEM) students at a historically black college and university (HBCU) was done by implementing a transformative teaching model. The model was implemented on undergraduate students of different educational levels in the Electrical Engineering (EE) Department at HBCU. The model was also extended to carefully chosen high and middle schools. These middle and high school students serve as a pipeline to the university, with a particular emphasis on fostering growth within the EE Department. The model aligns well with the core mission of the EE Department, aiming to enhance the theoretical knowledge and practical skills of students, ensuring that they are qualified to work in industry or to pursue graduate studies. The implemented model prepares students for outstanding STEM careers. It also increases enrolment, student retention, and the number of underrepresented minority graduates in a technology-based workforce.
With the in-depth development and widespread application of educational informatization, digital education has also become one of the important features of educational modernization. Designing and completing a visual teaching system based on Web technology is of great significance for promoting further reform and development of teaching, especially for achieving remote education, which has great application value. Based on visual teaching needs analysis and B/S architecture, effective system development is achieved through Access database. According to the specific needs of teaching functions, the system can be divided into multiple modules, and the management and login of teaching resources for users can also be smoothly achieved. This has important research value for achieving the goal of remote visualization of teaching.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
The focus of the article is the evaluation of the interaction between regional state bodies and business structures in Kazakhstan, specifically in terms of the development of public-private partnerships. The purpose of the research is to enhance the understanding of the theoretical and practical aspects of the mechanism of interaction between the state and business structures. Through an examination of the various structural components of the partnership development strategy, the study aims to identify the elements of the mechanism for the implementation of the state and business development strategy. Additionally, the research seeks to establish the correlation between the outcomes of the joint entrepreneurship mechanism and the criteria used to evaluate the performance of regional state bodies. To assess the effectiveness of the interaction between business and government at the regional level in Kazakhstan, a survey-based evaluation was conducted to measure the satisfaction levels of public utilities, entrepreneurs, and businesses with the activities of local authorities. The survey also evaluated the degree of corruption among local authorities. A matrix of interaction between business and government was created, and various models and algorithms for the interaction between government representatives and business structures were studied. The research findings highlight the importance of enhancing the collaboration between the state and the business sector, promoting the implementation of public-private partnerships, and establishing social partnerships to cultivate mutually beneficial relationships.
The advent of Artificial Intelligence (AI) has transformed Learning Management Systems (LMSs), enabled personalized adaptation and facilitated distance education. This study employs a bibliometric analysis based on PRISMA-2020 to examine the integration of AI in LMSs from an educational perspective. Despite the rapid progress observed in this field, the literature reveals gaps in the effectiveness and acceptance of virtual assistants in educational contexts. Therefore, the objective of this study is to examine research trends on the use of AI in LMSs. The results indicate a quadratic polynomial growth of 99.42%, with the years 2021 and 2015 representing the most significant growth. Thematic references include authors such as Li J and Cavus N, the journal Lecture Notes in Computer Science, and countries such as China and India. The thematic evolution can be observed from topics such as regression analysis to LMS and e-learning. The terms e-learning, ontology, and ant colony optimization are highlighted in the thematic clusters. A temporal analysis reveals that suggestions such as a Cartesian plane and a league table offer a detailed view of the evolution of key terms. This analysis reveals that emerging and growing words such as Learning Style and Learning Management Systems are worthy of further investigation. The development of a future research agenda emerges as a key need to address gaps.
Copyright © by EnPress Publisher. All rights reserved.