Sustainability is a top priority for municipal administrations, particularly in large urban centers where citizens rely on transportation for work, study, and daily errands. Public transportation faces a significant challenge beyond availability, performance, safety, and comfort: balancing the cost for the city with fare attractiveness for passengers. Meanwhile, bicycles, supported by public incentives due to their clean and healthy appeal, compete with public transit. In Curitiba, the integrated transport system has been consistently losing passengers, exacerbated by the pandemic and the rise in private vehicle usage. To address this, the city is expanding bicycle infrastructure and electric bike rental services, impacting public transit revenue, and prompting the need for financial compensation to maintain affordable fares for those reliant on public transport. Therefore, this study’s objective is to analyze the bicycle’s impact on public transportation, considering the impact of public policies on economic and social efficiency, not just ecological and environmental factors. Data from six main bus lines were collected and analyzed in two separate linear regression models to verify the effects of new bicycles in circulation, bus tariffs, and weather conditions on public transportation demand. Research results revealed a significant impact of bus tariffs and fuel prices on the number of new bicycles that are diverting passengers from public transportation. The discussion may offer a different perspective on public transport policies and improve city infrastructure investments to strategically change the urban form to address social and economic issues.
The effective allocation of resources within police patrol departments is crucial for maintaining public safety and operational efficiency. Traditional methods often fail to account for uncertainties and variabilities in police operations, such as fluctuating crime rates and dynamic response requirements. This study introduces a fuzzy multi-state network (FMSN) model to evaluate the reliability of resource allocation in police patrol departments. The model captures the complexities and uncertainties of patrol operations using fuzzy logic, providing a nuanced assessment of system reliability. Virtual data were generated to simulate various patrol scenarios. The model’s performance was analyzed under different configurations and parameter settings. Results show that resource sharing and redundancy significantly enhance system reliability. Sensitivity analysis highlights critical factors affecting reliability, offering valuable insights for optimizing resource management strategies in police organizations. This research provides a robust framework for improving the effectiveness and efficiency of police patrol operations under conditions of uncertainty.
This study investigated the utilization of Artificial Intelligence (AI) in the Recruitment and Selection Process and its effect on the Efficiency of Human Resource Management (HRM) and on the Effectiveness of Organizational Development (OD) in Jordanian commercial banks. The research aimed to provide solutions to reduce the cost, time, and effort spent in the process of HRM and to increase OD Effectiveness. The research model was developed based on comprehensive review of existing literature on the subject. The population of this study comprised HR Managers and Employees across all commercial banks in Jordan, and a census method was employed to gather 177 responses. Data analysis was conducted using Amos and SPSS software packages. The findings show a statistically significant positive impact of AI adoption in the Recruitment and Selection Process on HR Efficiency, which in turn positively impacted OD Effectiveness. Additionally, the study indicated that the ease-of-use of AI technologies played a positive moderating role in the relationship between the Recruitment and Selection Process through AI and HR Efficiency. This study concludes that implementing AI tools in Recruitment is vital through improving HR Efficiency and Organization Effectiveness.
This paper empirically analyzes the relationship between corporate governance and capital market risk using A-share listed companies in China’s Shanghai and Shenzhen markets from 2008 to 2022 as a research sample. The study finds that corporate governance decreases capital market risk using new risk measurement at the firm level. Further analysis shows that such an effect is more pronounced in the sample of private companies, companies with a higher degree of indebtedness, and companies with a lower concentration of power. This paper’s findings help us better understand corporate governance’s role in stock risk and provide theoretical support and empirical evidence to improve the stability of the financial market in emerging markets.
Environmental regulation is globally recognized for its crucial role in mitigating environmental pollution and is vital for achieving the Paris Agreement and the United Nations Sustainable Development Goals. There is a current gap in the comprehensive overview of the significance of environmental regulation research, necessitating high-level insights. This paper aims to bridge this gap through an exhaustive bibliometric review of existing environmental regulation research. Employing bibliometric analysis, this study delineates publication trends, identifies leading journals, countries, institutions, and scholars. Utilizing VOSviewer software, we conducted a frequency and centrality analysis of keywords and visualized keyword co-occurrences. This research highlights current hotspots and central themes in the field, including “innovation”, “performance”, “economic growth”, and “pollution”. Further analysis of research trends underscores existing knowledge gaps and potential future research directions. Emerging topics for future investigation in environmental regulation include “financial constraints”, “green finance”, “green credit”, “ESG”, “circular economy”, “labor market”, “political uncertainty”, “digital transformation”, “exports” and “mediating effects”. Additionally, “quasi-natural experiments” and “machine learning” have emerged as cutting-edge research methodologies in this domain. The focus of research is shifting from analyzing the impact of environmental regulation on “innovation” to “green innovation” and from “emissions” to “carbon emissions”. This study provides a comprehensive and structured understanding, thereby guiding subsequent research in this field.
Copyright © by EnPress Publisher. All rights reserved.