The main long-term goal of international communities is to achieve sustainable development. This issue is currently highly topical in most European Union (EU) countries due to the ongoing energy crisis. Building Integrated Photovoltaics (BIPV), which can be integrated into the building surface (roof or facade), thereby replacing conventional building materials, contributes significantly to achieving zero net energy buildings. However, fire safety is important when using BIPV as a structural system in buildings, and it is essential that the application of BIPV as building facades and roofs does not adversely affect the safety of the buildings, their occupants, or the responding firefighters. As multifunctional products, BIPV modules must meet fire safety requirements in the field of electrical engineering as well as in the construction industry. In terms of building regulations, the fire safety requirements of the BIPV must comply with national building regulations. Within this article, aspects and fire hazards associated with BIPV system installations will be defined, including proposals for installation and material requirements that can help meet fire safety.
This paper highlights the complex relationship between entrepreneurship, sustainable development, and economic growth in 41 European countries, using a reliable K-Means cluster analysis. The research thoroughly evaluates three key factors: the SDG Index for sustainable development, GDP per capita for economic well-being, and the New Business Density Rate for entrepreneurial activity. Our methodology reveals three distinct narratives that embody varying degrees of economic vitality and sustainability. Cluster 1 comprises the financially stable and sustainability-oriented countries of Western and Northern Europe. Cluster 2 showcases the variegated economic and sustainability initiatives in Central and Southern Europe. Cluster 3 envelopes the economic titans with noteworthy business expansion but with the potential for better sustainable practices. The analysis reveals a favourable association between economic prosperity and sustainable development within clusters, although with nonlinear intricacies. The research concludes with a series of strategic imperatives specifically crafted for each cluster, promoting economic variation, increased sustainability, invention, and worldwide collaboration. The resulting findings highlight the crucial need for policy-making that considers the specific context and the potential for combined European resilience and sustainability.
Edible cutlery is a safe alternative that, if adopted, can act as a panacea to plastic pollution. Consumers who believe in a lifestyle of health and sustainability (LOHAS) can motivate others by taking the lead in this direction. This study has explored the psychological variables associated with LOHAS consumers in conjunction with the product attributes of edible cutlery to check whether these variables can influence lifestyle of health and sustainability (LOHAS) consumers to adopt edible cutlery. An empirical study on 210 LOHAS consumers using Partial Least Squares Structure Equation Modelling (PLS-SEM) and Importance Performance Matrix Analyses (IPMA) showed that social consciousness and subjective norms motivate them to adopt edible cutlery in restaurants. This finding has an implication for hospitality businesses using edible cutlery that can target LOHAS consumers with strategies that affect their social consciousness and subjective norm belief for better adoption intentions.
Water pollution has become a serious threat to our ecosystem. Water contamination due to human, commercial, and industrial activities has negatively affected the whole world. Owing to the global demanding challenges of water pollution treatments and achieving sustainability, membrane technology has gained increasing research attention. Although numerous membrane materials have focused, the sustainable water purification membranes are most effective for environmental needs. In this regard sustainable, green, and recyclable polymeric and nanocomposite membranes have been developed. Materials fulfilling sustainable environmental demands usually include wide-ranging polyesters, polyamides, polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. Consequently, water purification membranes for nanofiltration, microfiltration, reverse osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable polymer membranes for water purification have been manufactured using facile techniques. The resulting membranes have been tested for desalination, dye removal, ion separation, and antibacterial processes for wastewater. Environmental sustainability studies have also pointed towards desired life cycle assessment results for these water purification membranes. Recycling of water treatment membranes have been performed by three major processes mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable membranes has caused positive environmental impacts for safe waste water treatment. Importantly, worth of sustainable water purification membranes has been analyzed for the environmentally friendly water purification applications. There is vast scope of developing and investigating water purification membranes using countless sustainable polymers, materials, and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the global demands and challenges to attain future clean water and ecosystem.
Water splitting, the process of converting water into hydrogen and oxygen gases, has garnered significant attention as a promising avenue for sustainable energy production. One area of focus has been the development of efficient and cost-effective catalysts for water splitting. Researchers have explored catalysts based on abundant and inexpensive materials such as nickel, iron, and cobalt, which have demonstrated improved performance and stability. These catalysts show promise for large-scale implementation and offer potential for reducing the reliance on expensive and scarce materials. Another avenue of research involves photoelectrochemical (PEC) cells, which utilize solar energy to drive the water-splitting reaction. Scientists have been working on designing novel materials, including metal oxides and semiconductors, to enhance light absorption and charge separation properties. These advancements in PEC technology aim to maximize the conversion of sunlight into chemical energy. Inspired by natural photosynthesis, artificial photosynthesis approaches have also gained traction. By integrating light-absorbing materials, catalysts, and membranes, these systems aim to mimic the complex processes of natural photosynthesis and produce hydrogen fuel from water. The development of efficient and stable artificial photosynthesis systems holds promise for sustainable and clean energy production. Tandem cells, which combine multiple light-absorbing materials with different bandgaps, have emerged as a strategy to enhance the efficiency of water-splitting systems. By capturing a broader range of the solar spectrum, tandem cells optimize light absorption and improve overall system performance. Lastly, advancements in electrocatalysis have played a critical role in water splitting. Researchers have focused on developing advanced electrocatalysts with high activity, selectivity, and stability for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). These electrocatalysts contribute to overall water-splitting efficiency and pave the way for practical implementation.
Photocatalysis, an innovative technology, holds promise for addressing industrial pollution issues across aqueous solutions, surfaces, and gaseous effluents. The efficiency of photodegradation is notably influenced by light intensity and duration, underscoring the importance of optimizing these parameters. Furthermore, temperature and pH have a significant impact on pollutant speciation, surface chemistry, and reaction kinetics; therefore, process optimization must consider these factors. Photocatalytic degradation is an effective method for treating water in environmental remediation, providing a flexible and eco-friendly way to eliminate organic contaminants from wastewater. Selectivity in photocatalytic degradation is achieved by a multidisciplinary approach that includes reaction optimization, catalyst design, and profound awareness of chemical processes. To create efficient and environmentally responsible methods for pollution removal and environmental remediation, researchers are working to improve these components.
Copyright © by EnPress Publisher. All rights reserved.