The sustainable development of Madeira Island necessitates the implementation of more precise and targeted planning strategies to address its regional challenges. Given the urgency of this issue within the context of sustainability, planning approaches must be grounded in and reinforced by a comprehensive array of thematic studies to fully grasp the complexities involved. This research leverages Geographic Information Systems (GIS) to analyze land use and occupancy patterns and their evolution within the municipality of Machico on Madeira Island. The study provides a nuanced perspective on the urban structure’s stagnation in the region, while concurrently highlighting the dynamic shifts in agricultural practices. Furthermore, it elucidates the transformation of predominant native vegetation within the municipality from 1990 to 2018. Notably, the research underscores the alarming decline in native vegetation due to anthropogenic activities, emphasizing the need for more rigorous monitoring by regional authorities to safeguard and preserve these valuable landscapes, habitats, and ecosystems.
The article addresses the issue of educational development policy in Ukraine: the main trends and ways, means, technologies of their implementation. It has been observed that educational policy is developing and changing under the influence of such factors as Russia’s military actions against our country, European integration and globalisation. It has been taken into account that globalisation trends in the world integration, according to which globalisation processes should be reflected not only in the foreign economic, political or technological spheres, but also, as a consequence, in the development of technologies for training future teachers. Integration of digital technologies in the educational process is one of the key tendencies in the modern educational policy in Ukraine. The characteristics of the most used technologies of augmented reality in the modern school of Ukraine have been outlined. The algorithm for displaying generalized information about a particular application was proposed, namely: payment, accessibility, language, system requirements; learning opportunities; practical value; website; video about the application. The model of the formation of future teachers’ skills to use augmented reality technologies in the process of natural sciences studying has been proposed. We consider it as a component of a holistic system of future teachers’ professional training. The conceptual basis for the development of the model is a multi-subject educational paradigm, which is considered to be open, self-developing and self-organizing, causing a fundamental change in the behavior and relationships of the educational process participants. The proposed model is implemented in the authors’ methodological system, which ensures the interconnected activities of all participants in the educational process. Its systemic factor is the goal of improving the quality of the future natural sciences teachers’ professional training by developing their skills in using AR technology. The end result is an increase in the level of future natural sciences teachers’ readiness to use AR technology in their professional activities.
Raising public awareness of maritime risk and disseminating information about disaster prevention and reduction are the most frequent ways that the government incorporates citizens in marine disaster risk management (DRM). However, these measures are deemed to be insufficient to drive the participation rate. This study aims to understand the participation trend of citizens in marine DRM. On the basis of the theory of citizen participation’s ladder, public participation within marine DRM is categorized into non-participation, tokenistic participation, and substantive participation. Using organization theory, the government’s strategies for encouraging participation are classified into common approach (raising awareness), structural approach (innovating instruments), and cultural approach (developing citizenship). Considering the vignette experiment of 403 citizens in a coastal city of China that has historically been subject to marine disasters, it was found that effectiveness of the strategies, from highest to lowest, are citizenship development, risk education, and instruments innovation. At the individual level, psychological characteristics such as trust in the government, past disaster experience, and knowledge of marine DRM did not significantly influence citizens’ participation preferences. At the government level, even when citizens are informed about new participatory mechanisms and tools, they still tend to be unwilling to share responsibilities. However, self-efficacy and understanding the beneficial outcomes of their participation in marine (DRM) can positively impact the willingness to participate. The results show that to encourage public participation substantively in the marine DRM, it is important to cultivate a sense of civic duty and enhance citizens’ sense of ownership, fostering a closer and more equitable partnership between the state and society.
This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
Classical photography, aesthetic beauty, and scientific analysis are related. This article explores composition, light manipulation, and emotion to examine the aesthetic components that characterize classical traditions. Pioneers like Julia Margaret Cameron are revealed from a historical perspective, and Ansel Adams' landscapes are the pinnacle of harmony and majesty. Scientific discoveries illuminate the psychology of authenticity and engagement in the digital age while promoting visual literacy. The timeless influence of artistry in the visual narrative is underscored by classic aesthetics, which connect the past, present, and resound through great works.
Climate change has adverse effects on ecosystems and several socio-economic sectors including health. Indeed, infrastructure, continuity of medical services, and the hospital environment are all directly affected by the effects of climate-related risks. This study aims to describe the observations of the effects of climate change risks on health systems in the Greater Lomé health region of Togo. We used an interview guide and a questionnaire to collect information. The observations allowed us to assess the effects caused by climate risks. According to the results, 84.62% of respondents attest that health centers experience flooding during rainy periods and damage caused by strong winds is noticeable among 76.92% of respondents. More than 25.40% and 61.86% respectively of respondents mention that droughts and floods have effects on health systems. The results of this study will allow health system managers to become aware of how to plan useful actions to facilitate the management of climate-related risks in health facilities in the Greater Lomé health region. In view of all these results, it is necessary that measures be taken to strengthen the resilience of health systems through awareness campaigns and training of actors throughout the health pyramid.
Copyright © by EnPress Publisher. All rights reserved.