This study employed a deductive approach to examine external HRM factors influencing job satisfaction in the post-pandemic hybrid work environment. Explores the intermediary functions of age, gender, and work experience in this particular environment. The data-gathering procedure consisted of conducting semi-structured interviews with carefully chosen 50 managers representing various sectors, industries, organizations, and professions. The applied approach was adopted to allow a systematic and unbiased investigation of the mediating variables. The study used SPSS 25 and Smart PLS 4 to analyze the model, enhancing understanding of HRM challenges in a constantly evolving workplace. The findings offer valuable insights for HR experts and businesses, highlighting the value of comprehending what methods HRM components influence job satisfaction to optimize employee well-being and productivity. The study provides applied recommendations designed for enhancing employee contentment in the AI-evolving professional atmosphere, shedding light on the importance of supportive leadership strategies, particularly during AI-triggered downsizing. Additionally, we welcome a new era to push forward in integrating and managing AI tools and technologies to automate decision-making and data processing. Results propose that Exogenous influences of human resource management (HRM) influence manager job satisfaction considerably. Specifically, downsizing caused by AI was found to have negative consequences, whereas diversity and restructuring have favorable effects. Gender was recognized as a crucial factor that influences outcomes, then age and years of experience have the most visible effect.
Using time series data covering the years 1980 to 2020, this study examines the effects of government spending, population growth, and economic expansion on unemployment in the context of South Africa. The study’s variables include government spending, population growth, and economic growth as independent factors, and unemployment as the dependent variable. To ascertain the study’s outcomes, basic descriptive statistics, the Vector Error Correction Model (VECM), the Johansen Cointegration Procedures, the Augmented Dicky-Fuller Test (ADF), and diagnostic tests were used. Since all the variables are stationary at the first difference, the ADF results show that there isn’t a unit root issue. According to the Johansen cointegration estimation, there is a long-term relationship amongst the variables. Hence the choice of VECM to estimate the outcomes. Our results suggests that a rise in government spending will result in a rise in South Africa’s unemployment rate. The findings also suggest that there is a negative correlation between unemployment and population growth. This implies that as the overall population grows, unemployment will decline. Additionally, the findings suggest that unemployment and economic growth in South Africa are positively correlated. This contradicts a number of economic theories, including Keynesian and Okuns Law, which hold that unemployment and economic growth are inversely correlated.
Purpose: The purpose of this paper is to explore the impact of Artificial Intelligence on the performance of Indian Banks in terms of financial metrics. The study focused specifically on the NIFTY Bank Index. The paper also advocates that a greater transparency in disclosing AI related information in a Bank’s annual report is required even if it is voluntary. Design/Methodology/Approach: The paper uses a mixed method approach where quantitative and qualitative analysis is combined. A dynamic panel data model is used to understand the impact of AI of Return on Equity (RoE) of 12 Indian Banks in the NIFTY Bank Index over a five-year period. In addition to that, Content analysis of annual reports of banks was conducted to examine AI related disclosure and transparency. Findings: The paper highlights that the integration of Artificial Intelligence (AI) significantly influences the financial performance of sample banks of India. Return on Equity the specific parameter positively influenced with adoption of AI. The profitability of banks is positively impacted by reduced errors and improved operational efficiency. The content analysis of annual reports of the banks indicates different approach for AI disclosure where some banks give detailed information and some are not transparent about AI initiatives. The findings suggest that a higher level of transparency could enhance confidence of all stakeholders. Theoretical Implications: The positive relation between adoption of AI and financial performance, specifically ROE, gives a foundation for academic research to explore the dynamics of emerging technology and financial systems. The study can be extended to explore the impact on other performance indicators in different sectors. Practical Implications: The findings of this study emphasize the importance of transparent AI related disclosures. A detailed reporting about integration of AI helps in enhanced stakeholders’ confidence in case of banking industry. The regulatory framework of banks may also consider making mandatory AI disclosure practices to ensure due accountability to maximize the benefits of AI in banking.
South Korea has experienced rapid economic development since the 1960s. However, pronounced regional disparities have concurrently emerged. Amid the escalating regional inequalities and persistent demographic challenges characterized by low fertility rates, regional decline has become a pressing issue. Therefore, the feasibility of expanding transportation networks as a countermeasure to regional decline has been proposed. This study utilizes the synthetic control method and spatial difference-in-differences methodologies to assess the impact of the 2017 opening of Seoul–Yangyang Expressway on economic development and population inflow within Hongcheon-gun, Inje-gun, and Yangyang-gun. The purpose of this study is to evaluate the effectiveness of highway development as a policy instrument to mitigate regional decline. Findings from the synthetic control method analysis suggest a positive impact of the opening of the expressway on Hongcheon-gun’s Gross Regional Domestic Product (GRDP) in 2018, as well as Yangyang-gun’s net migration rates from 2017 to 2019. Conversely, the spatial difference-in-differences analysis, designed to identify spillover effects, reveals negative impacts of the highway on the GRDP and net migration rates of adjacent regions. Consequently, although targeted transportation infrastructure development in key non Seoul Metropolitan cities may contribute to ameliorating regional imbalances, results indicate that such measures alone are unlikely to suffice in attracting population to small- and medium-sized cities outside the Seoul Metropolitan Area.
The study examines the impact of COVID-19 on the economies of Gulf Corporation Council (GCC) member states. The event study methodology was used to analyze Cumulative Abnormal Return (CAR) of GCC member states’ stock indexes: Kuwait Stock Exchange Index (KSE), Dubai Financial Market Index (DFM), Saudi Arabia Tadawul Index (TASI), Qatar Exchange Index (QE), Bahrain All Share Index (BHB), Oman’s Muscat Stock Exchange Index (MSM), Abu Dhabi Stock Exchange Index (ADX) while the S&P GCC Composite Index was used as a reference. Data obtained from 28 July 2019 to 27 July 2020, and 1 March 2020, designated as the event day, abnormal returns (AR) and cumulative average abnormal returns (CAARs) were examined across various time intervals. The findings reveal significant market reactions to the pandemic, characterized by fluctuations in abnormal returns and CAARs. Statistically significant abnormal returns and CAARs during certain time periods underscore the dynamic nature of market responses to the COVID-19 event. These results provide valuable insights for policymakers and market participants seeking to understand and navigate the economic implications of the pandemic on GCC economies. The study recommends that other GCC states, particularly Oman, consider the policies undertaken by Qatar, UAE, and Saudi Arabia, to avoid a long economic crisis.
Copyright © by EnPress Publisher. All rights reserved.