The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Based on the population change data of 2005–2009, 2010–2014, 2015–2019 and 2005–2019, the shrinking cities in Northeast China are determined to analyze their spatial distribution pattern. And the influencing factors and effects of shrinking cities in Northeast China are explored by using multiple linear regression method and random forest regression method. The results show that: 1) In space, the shrinking cities in Northeast China are mainly distributed in the “land edge” areas represented by Changbai Mountain, Sanjiang Plain, Xiaoxing’an Mountain and Daxing’an Mountain. In terms of time, the contraction center shows an obvious trend of moving northward, while the opposite expansion center shows a trend of moving southward, and the shrinking cities gather further; 2) in the study of influencing factors, the results of multiple linear regression and random forest regression show that socio-economic factors play a major role in the formation of shrinking cities; 3) the precision of random forest regression is higher than that of multiple linear regression. The results show that per capita GDP has the greatest impact on the contraction intensity, followed by the unemployment rate, science and education expenses and the average wage of on-the-job workers. Among the four influencing factors, only the unemployment rate promotes the contraction, and the other three influencing factors inhibit the formation of shrinking cities to various degrees.
This study examines the rapid convergence of the tourism industry with other sectors, driven by the expanding experience economy. A conceptual model was introduced encompassing industry convergence patterns, paths, and effects to assess this convergence’s effectiveness. Using a survey of 392 tourists in Macau, these findings reveal that the tourism industry convergence path and mode positively influence the convergence effect, thereby shaping tourists’ perceived value. Moreover, this study identifies that convergence mode and effect mediate the relationship between the tourism industry convergence path and perceived value. This study validates the efficacy of industrial convergence paths and models in fostering regional industry convergence within the tourism sector. Additionally, it contributes a theoretical framework for evaluating industry convergence effects at a micro level, enhancing both the theoretical understanding and practical applications of Macao’s tourism industry and industrial convergence theory.
This study seeks to examine the factors affecting the intention of Indonesian MSMEs to adopt QRIS. It leverages variables from the Technology Acceptance Model (TAM), customizing the TAM framework to address the unique perceptions of risk and cost among MSMEs in Indonesia. Data were gathered from 212 MSME participants in Brebes Regency through convenience sampling, a non-probability sampling technique, using Google Forms for survey distribution. The findings indicate that perceived ease of use positively and significantly influences attitudes, which, in turn, positively and significantly impact the intention to continue using QRIS. However, perceived benefits, perceived risks, and perceived costs did not significantly affect the intention to continue use.
Ancestral knowledge is essential in the construction of learning to preserve the sense of relevance, transmit and share knowledge according to its cultural context, and maintain a harmonious relationship with nature and sustainability. The objective of this research is to study and analyze the management of ancestral knowledge in the production of the Raicilla to provide elements to rural communities, producers, and facilitators in decision-making to be able to innovate and be more productive, competitive, sustainable, and improve people’s quality of life. The methodological strategy was carried out through Bayesian networks and Fuzzy Logic. To this end, a model was developed to identify and quantify the critical factors that impact optimally managed technology to generate value that translates into innovation and competitive advantages. The evidence shows that the optimal and non-optimal management of knowledge, technology, and innovation management and its factors, through the causality of the variables, permits us to capture the interrelationship more adequately and manage them. The results show that the most relevant factors for adequate management of ancestral knowledge in the Raicilla sector are facilitators, denomination of origin, extraction and fermentation, and government. The proposed model will support these small producers and help them preserve their identity, culture, and customs, contributing greatly to environmental sustainability.
Copyright © by EnPress Publisher. All rights reserved.