Based on the collective forest with common use rights, the social-ecological system analysis framework and autonomous governance theory proposed by Elinor Ostrom are introduced in the forest eco-economic system to analyze the interaction logic among the first-level subsystems and the secondary variables of the forest eco-economic system and the variables related to the autonomous governance of the system to explore the synergistic mechanisms affecting the forest eco-economic system. The results show that: in the case of information asymmetry, collective actions of governmental and non-governmental organizations will aggravate the dilemma of forest eco-economic synergistic development; actors extract forest resource units from the forest resource system to achieve economic benefits; and renewable resources of forest ecosystems can be sustained in the long term when the average extraction rate of humans from forest ecosystems does not exceed the average replenishment rate.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
The market demand for uniformity and productivity of commercial carrot roots has prioritized hybrid materials over open-pollinated varieties. In this sense, the objective of this work was to estimate the combining ability of carrot genitors for root productivity and resistance to leaf scorch. The experiments were conducted in Gama, DF, in the agricultural years 2012/13 and 2013/14. We evaluated 33 carrot hybrids, originated from crosses between three male-sterile populations, with 11 male-fertile S2 lines, all the genitors being of tropical origin. At 90 days after sowing, the severity of the leaf blight disease was estimated in the plots. At 100 days after sowing, harvesting was performed and root yield characters were evaluated. Analysis of variance and partial diallel analysis were performed for each year and jointly for both years. It was found that additive and non-additive genes are important in the manifestation of root yield and leaf blight resistance traits in carrot hybrids. The male-sterile parents with higher overall combining ability for root productivity are strains LM-649 and LM-650 and, among the male-fertile, strain LM-555-2-2. The best hybrids for root yield and leaf blight resistance are LM-649 × LM-555-11-1, LM-650 × LM-555-7-1 and LM-650 × LM-554-8-1.
This study delves into the evolving landscape of smart city development in Kazakhstan, a domain gaining increasing relevance in the context of urban modernization and digital transformation. The research is anchored in the quest to understand how specific technological factors influence the formation of smart cities within the region. To this end, the study adopts a Spatial Autoregressive Model (SAR) as its core analytical tool, leveraging data on server density, cloud service usage, and electronic invoicing practices across various Kazakhstani cities. The crux of the research revolves around assessing the impact of these selected technological variables on the smart city development process. The SAR model’s application facilitates a nuanced understanding of the spatial dynamics at play, offering insights into how these factors vary in influence across different urban areas. A key finding of this investigation is the significant positive correlation between the adoption of electronic invoicing and smart city development, a result that stands in contrast to the relatively insignificant impact of server density and cloud service usage. The conclusion drawn from these findings underscores the pivotal role of digital administrative processes, particularly electronic invoicing, in driving the smart city agenda in Kazakhstan. This insight not only contributes to the academic discourse on smart cities but also holds practical implications for policymakers and urban planners. It suggests a strategic shift towards prioritizing digital administrative innovations over mere infrastructural or technological upgrades. The study’s outcomes are poised to guide future smart city initiatives in Kazakhstan and offer a reference point for similar emerging economies embarking on their smart city journeys.
The danger of riverbed processes is considered. Their speed varies from the first few months of the flood to the most dynamic process in nature. It happened in front of people. This may make life on the river bank and the utilization of river resources more difficult. This paper introduces the causes and consequences of the danger performance of riverbed processes, and focuses on the mapping methods of the danger assessment of riverbed processes: determining the danger degree of riverbed processes and different methods of displaying it on the map. An example of displaying danger on the previously drawn map is given, and the distribution of different types and expression degrees of dangerous riverbed processes under various natural conditions in Russia is briefly analyzed.
Copyright © by EnPress Publisher. All rights reserved.