Cyber-physical Systems (CPS) have revolutionized urban transportation worldwide, but their implementation in developing countries faces significant challenges, including infrastructure modernization, resource constraints, and varying internet accessibility. This paper proposes a methodological framework for optimizing the implementation of Cyber-Physical Urban Mobility Systems (CPUMS) tailored to improve the quality of life in developing countries. Central to this framework is the Dependency Structure Matrix (DSM) approach, augmented with advanced artificial intelligence techniques. The DSM facilitates the visualization and integration of CPUMS components, while statistical and multivariate analysis tool such as Principal Component Analysis (PCA) and artificial intelligence methods such as K-means clustering enhance complex system the analysis and optimization of complex system decisions. These techniques enable engineers and urban planners to design modular and integrated CPUMS components that are crucial for efficient, and sustainable urban mobility solutions. The interdisciplinary approach addresses local challenges and streamlines the design process, fostering economic development and technological innovation. Using DSM and advanced artificial intelligence, this research aims to optimize CPS-based urban mobility solutions, by identifying critical outliers for targeted management and system optimization.
Traditional building heating warms entire rooms, often leaving some dissatisfied with uneven warmth. Recently, the personalized heating system has addressed this by providing targeted warmth, enhancing comfort and satisfaction. The personalized heating system in this study is a new enclosed personalized heating system consisting of a semi-enclosed heating box and an insulated chair covered with a thick blanket. The study compares the heating effects of semi-enclosed and enclosed localized heating systems on the body and examined changes in subjects’ thermal sensations. Due to the lower heat loss of the enclosed personalized heating system compared to the semi-enclosed version, it created thermal micro-environments with higher ambient temperatures. The maximum air temperature increase within the enclosed system was twice that of the semi-enclosed system, with the heating film surface temperature rising by up to 6.87 ℃. Additionally, the temperature of the skin could increase by as much as 6.19 ℃, allowing individuals to maintain thermal neutrality even when the room temperature dropped as low as 8 ℃. A two-factor repeated measures analysis of variance revealed differences in temperature sensitivity across various body regions, with the thighs showing a notably higher response under high-power heating conditions. The corrective energy and power requirements of the enclosed personalized heating system also made it more energy-efficient than other personalized heating systems, with a minimum value reaching 6.07 W/K.
The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. This study focuses on riverbed cities, aiming to analyze flood occurrences and their influencing factors. Through an extensive literature review, five key criteria commonly associated with flood events were identified: slope height, distance from rivers, topographic index, and runoff height. Utilizing the network analysis process within Super Decision software, these factors were weighted, and a final flood risk map was generated using the simple weighted sum method. 75% of the data was used for training, and 25% of it was used for testing. Additionally, vegetation changes were assessed using Landsat imagery from 2000 and 2022 and the normalized difference vegetation index (NDVI). The focus of this research is Qirokarzin city as a case study of riverbed cities, situated in Fars province, with Qir city serving as its central hub. Key rivers in Qirokarzin city include the Qara Aghaj River, traversing the plain from north to south; the primary Mubarak Abad River, originating from the east; and the Dutulghaz River, which enters the eastern part of the plain from the southwest of Qir, contributing to plain nourishment during flood events. The innovation of this paper is that along with the objective to produce a reliable delineation of hazard zones, a functional distinction between the loading and the response system (LS and RS, respectively) is made. Results indicate the topographic index as the most influential criterion, delineating Qirokarzin city into five flood risk zones: very low, low, moderate, high, and very high. Notably, a substantial portion of Qirokarzin city (1849.8 square kilometers, 8.54% of the area) falls within high- to very-high flood risk zones. Weighting analysis reveals that the topographic humidity index and runoff height are the most influential criteria, with weights of 0.27 and 0.229, respectively. Conversely, the height criterion carries the least weight at 0.122. Notably, 46.7% of the study area exhibits high flood intensity, potentially attributed to variations in elevation and runoff height. Flood potential findings show that the middle class covers 32.3%, indicating moderate flood risk due to changes in elevation and runoff height. The low-level risk is observed sporadically from the east to the west of the study area, comprising 12.4%. Analysis of vegetation changes revealed a significant decline in forest and pasture cover despite agricultural and horticultural development, exacerbating flood susceptibility.
Sustainable development within music education is essential, particularly in ensuring that popular music can continually and effectively serve educational systems. This research aims to 1) examine pop music chord progression, 2) develop a chord progression book specifically for teaching music students, and 3) evaluate the effectiveness of this educational tool in improving music composition skills. A mixed-methods approach, incorporating both qualitative and quantitative research, was used. Research tools included an interview guide, Ioc forms, a textbook, and a performance assessment form. Interviews were conducted with five experts in pop music composition, while a group of 14 undergraduate music students participated in the experimental study. These methods evaluated how teaching popular music chord composition enhances students’ practical composition abilities. The findings indicate that 1) chord composition in popular music primarily involves five aspects: melody, rhythm, chord structure, music form, and melody development techniques, with melody and chord as the foundational elements; 2) the chord progression textbook for popular music differs from traditional composition theory texts, combining theory and practical application with a focus on chord progression techniques; and 3) instruction in popular music chord composition significantly enhances students’ skills in melody creation, production, and listening, ultimately fostering practical music creation abilities. This study supports the sustainable integration of popular music in both music infrastructure construction and music education system development, offering insights into how such integration can drive long-term advancements in music education.
This study explores the role of intercultural communicative competence (ICC) and STEM education in building the soft infrastructure necessary for economic development within Kazakhstan’s transforming education system. The authors conducted an interdisciplinary analysis, emphasizing the cognitive and communicative aspects of foreign language education in secondary schools, proposing a model for integrating ICC through the use of information and analytical technologies. The research focuses on personalized education, teacher competencies, and student engagement, with experimental methods applied in a Karaganda-based school. The study aims to identify mechanisms and principles that enhance ICC development, contributing to Kazakhstan’s modernization efforts in fostering globally competitive graduates prepared for the demands of the international arena. This research lays the foundation for further practical experimentation in profiled schools, aligning education with national development goals.
This study evaluated the development and validation of an integrated operational model for the Underground Logistics System (ULS) in South Korea’s metropolitan area, aiming to address challenges in urban logistics and freight transportation by highlighting the potential of innovative logistics systems that utilize underground spaces. This study used conceptual modeling to define the core concepts of ULS and explored the system architecture, including cargo handling, transportation, operations and control systems, as well as the roles of cargo crews and train drivers. The ULS operational scenarios were verified through model simulation, incorporating both logical and temporal analyses. The simulation outcomes affirm the model’s logical coherence and precision, emphasizing ULS’s pivotal role in boosting logistics efficiency. Thus, ULS systems in Korea offer prospects for elevating national competitiveness and spurring urban growth, underscoring the merits of ULS in navigating contemporary urban challenges and championing sustainability.
Copyright © by EnPress Publisher. All rights reserved.