Background: Bitcoin mining, an energy-intensive process, requires significant amounts of electricity, which results in a particularly high carbon footprint from mining operations. In the Republic of Kazakhstan, where a substantial portion of electricity is generated from coal-fired power plants, the carbon footprint of mining operations is particularly high. This article examines the scale of energy consumption by mining farms, assesses their share in the country’s total electricity consumption, and analyzes the carbon footprint associated with bitcoin mining. A comparative analysis with other sectors of the economy, including transportation and industry is provided, along with possible measures to reduce the environmental impact of mining operations. Materials and methods: To assess the impact of bitcoin mining on the carbon footprint in Kazakhstan, electricity consumption from 2016 to 2023, provided by the Bureau of National Statistics of the Republic of Kazakhstan, was used. Data on electricity production from various types of power plants was also analyzed. The Life Cycle Assessment (LCA) methodology was used to analyze the environmental performance of energy systems. CO2 emissions were estimated based on emission factors for various energy sources. Results: The total electricity consumption in Kazakhstan increased from 74,502 GWh in 2016 to 115,067.6 GWh in 2023. The industrial sector’s electricity consumption remained relatively stable over this period. The consumption by mining farms amounted to 10,346 GWh in 2021. A comparative analysis of CO2 emissions showed that bitcoin mining has a higher carbon footprint compared to electricity generation from renewable sources, as well as oil refining and car manufacturing. Conclusions: Bitcoin mining has a significant negative impact on the environment of the Republic of Kazakhstan due to high electricity consumption and resulting carbon dioxide emissions. Measures are needed to transition to sustainable energy sources and improve energy efficiency to reduce the environmental footprint of cryptocurrency mining activities.
This research paper aims to examine the association between financial development and environmental quality in 31 European Union (EU) countries from 2001 to 2020. This study proposed an estimation model for the study by combining regression models. The regression model has a dependent variable, carbon emissions, and five independent variables, including Urbanization (URB), Total population (POP), Gross domestic product (GDP), Credit to the private sector (FDB), and Foreign direct investment (FDI). This research used regression methods such as the Fixed Effects Model, Random Effects Model, and Feasible generalized least squaresThe findings reveal that URB, POP, and GDP positively impact carbon emissions in EU countries, whereas the FDB variable exhibits a contrary effect. The remaining variable, FDI, is not statistically significant. In response to these findings, we advocate for adopting transformative green solutions that aim to enhance the quality of health, society, and the environment, offering comprehensive strategies to address Europe’s environmental challenges and pave the way for a sustainable future.
This study explores the spatial distribution pattern of educational infrastructure development across districts and cities in North Sumatra, identifying significant disparities between urban and rural areas. The study aims to: (1) determine the distribution of educational development across districts and cities, (2) analyze global spatial autocorrelation, and (3) identify priority locations for educational development policies in North Sumatra Province. The methodology includes quantile analysis, Moran’s Global Index, and Local Indicators of Spatial Autocorrelation (LISA) using GeoDa software to address spatial autocorrelation. The results indicate that there are nine areas with a low School Participation Rate Index (SPRI), eleven areas with a low School Facilities and Infrastructure Index (SFII), and eleven areas with a low Regional Education Index (REI). Spatial autocorrelation analysis reveals that SFII shows positive spatial autocorrelation, while SPRI and REI exhibit negative spatial autocorrelation, indicating a high level of inequality between regions. Labuhan Batu Selatan and Labuhan Batu are identified as priorities for the provincial government in overseeing educational development policies.
In a territorial development model such as that of Valencia (Spain), in which limitations, resistance and difficulties are observed as a result of the dualization that it has undergone in these almost 40 years of operation, we ask whether these obstacles have had an effect on the evolution of employment. This is understood as the basic indicator, the primary aim of any action undertaken for development of the territory. To this end, we set out from the methodological articulation of various techniques (survey by means of a pre-coded questionnaire, application of the READI® methodology) based on the primary information collected from the AEDL (Employment and Local Development Agents) technical staff of Valencia province, which showed us their perception of the dualization to which the model is subjected and the difficulties that this generates when carrying out their professional activity. Statistical and documentary sources were also analyzed. With all this, the evolution of employment in these territories over the last five years was studied in order to validate, or not, the initial hypothesis: Whether this reality of the model (duality) responds to short-term or structural parameters.
Human settlement patterns in the South are clearly inequitable and dysfunctional, with tenure insecurity remaining a significant issue. Consequently, there has been a dramatic increase in housing demand driven by rising household sizes and accelerated urbanization. Local governments have a clear mandate to ensure socio-economic development and promote democracy, which necessitates ongoing consultations and renegotiations with citizens. This paper critically examines the de-densification of informal settlements as a pivotal strategy to enhance the quality of life for citizens, all while maintaining essential social networks. Governments must take decisive action against pandemics by transforming spaces into liveable settlements that improve livelihoods. A qualitative method was employed, analyzing data drawn from interviews to gain insights into individual views, attitudes, and behaviors regarding the improvement of livelihoods in informal settlements. The study utilized a simple random sampling technique, ensuring that every individual in the population selected had an equal opportunity for inclusion. Semi-structured interviews were conducted with twenty community members in Cornubia, alongside discussions with three officials from eThekwini Municipality and KwaZulu Natal (KZN) Provincial Department of Human Settlements. Data was analyzed using thematic analysis, and the findings hold substantial benefits for the most disadvantaged citizens. Therefore, municipalities have an obligation to transform urban areas by reducing inequality, bolstered by national government policy, to achieve a resilient, safe, and accessible urban future. The evidence presented in this paper underscores that local governments, through municipalities, must prioritize de-densifying informal settlements in response to pandemics or hazards. It is vital to leverage community-driven initiatives and reinforce networks within these communities. The paper calls for the establishment of a socially centered government through the District Development Model (DDM), emphasizing socio-economic transformation as a pathway to enhance community quality of life.
To address the escalating online romance scams within telecom fraud, we developed an Adaptive Random Forest Light Gradient Boosting (ARFLGB)-XGBoost early warning system. Our method involves compiling detailed Online Romance Scams (ORS) incident data into a 24-variable dataset, categorized to analyze feature importance with Random Forest and LightGBM models. An innovative adaptive algorithm, the Adaptive Random Forest Light Gradient Boosting, optimizes these features for integration with XGBoost, enhancing early Online romance scams threat detection. Our model showed significant performance improvements over traditional models, with accuracy gains of 3.9%, a 12.5% increase in precision, recall improvement by 5%, an F1 score increase by 5.6%, and a 5.2% increase in Area Under the Curve (AUC). This research highlights the essential role of advanced fraud detection in preserving communication network integrity, contributing to a stable economy and public safety, with implications for policymakers and industry in advancing secure communication infrastructure.
Copyright © by EnPress Publisher. All rights reserved.