Liquid Metal Battery (LMB) technology is a new research area born from a different economic and political climate that has the ability to address the deficiencies of a society where electrical energy storage alternatives are lacking. The United States government has begun to fund scholarly research work at its top industrial and national laboratories. This was to develop Liquid Metal Battery cells for energy storage solutions. This research was encouraged during the Cold War battle for scientific superiority. Intensive research then drifted towards high-energy rechargeable batteries, which work better for automobiles and other applications. Intensive research has been carried out on the development of electrochemical rechargeable all-liquid energy storage batteries. The recent request for green energy transfer and storage for various applications, ranging from small-scale to large-scale power storage, has increased energy storage advancements and explorations. The criteria of high energy density, low cost, and extensive energy storage provision have been met through lithium-ion batteries, sodium-ion batteries, and Liquid Metal Battery development. The objective of this research is to establish that Liquid Metal Battery technology could provide research concepts that give projections of the probable electrode metals that could be harnessed for LMB development. Thus, at the end of this research, it was discovered that the parameter estimation of the Li//Cd-Sb combination is most viable for LMB production when compared with Li//Cd-Bi, Li-Bi, and Li-Cd constituents. This unique constituent of the LMB parameter estimation would yield a better outcome for LMB development.
This article analyses the case of Dubai’s smart city from a public policy perspective and demonstrates how critical it is to rely on the use of the public-private partnership (PPP) model. Effective use of this model can guarantee the building of a smart city that could potentially fulfill the vision of the political leadership in Dubai and serve as a catalyst and blueprint for other Gulf states that wish to follow Dubai’s example. This article argues that Dubai’s smart city project enjoys significant political support and has ambitious plans for sustainable growth, and that the government has invested heavily in developing the necessary institutional, legal/regulatory, and supervisory frameworks that are essential foundations for the success of any PPP project. The article also points to some important insights that the Dubai government can learn from the international experience with the delivery of smart cities through PPPs.
Studies to evaluate the response of passion fruit seedlings in terms of emergence, nursery, and early field growth to growing media and mulching were carried out at the Teaching and Research Farm of Joseph Sarwuan Tarka University Makurdi between July and December 2018. Treatments consisted of five media, composted from readily available substrates. The five nursery media were; medium 1:1:2:3 (SB) composed of top soil + poultry manure + river sand; medium 2:1:2:3 (RHB) – rice hull + poultry manure + river sand; medium 3:2:3:1 (RHB) – rice hull + poultry manure + river sand; medium 4:1:4:3 (SDB) – sawdust + poultry manure + river sand and medium 5:1:2:3 (SDB) – sawdust + poultry manure + river sand. For the nursery experiment, treatments were the five potting media, while the field trial was a 5 × 2 factorial arrangement consisting of the five growing media and mulching status (mulch and no mulch). In both cases, treatments were laid out in randomized designs that were replicated three times. Results showed that there were no significant differences in all the emergence traits evaluated. However, medium M5 (sawdust based) showed superior performance in most of the seedling characters evaluated. Under field conditions, the sawdust based media (M4 and M5) gave the best growth of passion fruit seedlings compared to the other potting media. Application of mulch, however, did not elicit any significant response in plant growth. It is therefore conclusive that sawdust based growing media could be used to produce high quality passion fruit seedlings with the prospect of excellent performance under field conditions.
The paper examines the motivations, financing, expansion and challenges of the Belt and Road Initiative (BRI). The BRI was initially designed to address China’s overcapacity and promote economic growth in both China and in countries along the “Belt” and “Road” through infrastructure investment and industrial capacity cooperation. It took into account China’s strategic transition in its opening-up policy and foreign policy to pay more attention to the neighboring countries in Southeast Asia and Central and West Asia when facing greater strategic pressure from the United States in East Asia and the Pacific region. More themes have been added to the initiative’s original framework since its inception in 2013, including the vision of the BRI as China’s major solution to improve international economic cooperation and practice to build a “community of shared future for mankind”, and the idea of the Green Silk Road and the Digital Silk Road. Chinese state-owned enterprises and policy and commercial banks have dominated investment and financing for BRI projects, which explains the root of the problems and risks facing the initiative, such as unsustainable debt, non-transparency, corruption and low economic efficiency. Measures taken by China to tackle these problems, for example, mitigating the debt distress and improving debt sustainability, are unlikely to make a big difference anytime soon due to the tenacity of China’s long-held state-driven investment model.
Nowadays, our life needs more and more electricity, and our lives cannot be without electricity, which requires our power to develop more quickly. Power plants are undoubtedly the place where electricity is produced. And now most of the power plant or chemical energy can be converted into heat, and then through the heat to do power production. The boiler is the main part of the power plant. Boiler unit consists of boiler body equipment and auxiliary equipment. The main body of the boiler consists of 'pot' (soft drinks system) and 'furnace' (combustion system). Baotou thermal power plant is mainly burning gas. The gas and air are at a certain rate into the furnace burning. This can greatly reduce the pollution of the environment, but also the full use of fuel. The soda system is mainly carried out in the drum. The heat generated by the combustion system heats the water in the drum, producing steam and then pushing the steam turbine into mechanical energy and finally into electrical energy. This has a high demand for water level, water composition, and the temperature of the steam produced in the drum. The water level should have upper and lower bounds, keeping it within a certain range. Water level is too high, will affect the steam drum soda separation effect, so that the steam drum exports of saturated steam with water increased, causing damage to the turbine, will cause serious explosion. And the water level is too low, it will affect the natural circulation of the normal, serious will make the individual water pipe to form a free water, resulting in flow stagnation, resulting in local metal wall overheating and burst pipe. Water in the heating at the same time will form a lot of scale, if not the chemical treatment of water will be in the formation of scale in the drum, cleaning more difficult, so the damage to the drum. The pressure of the drum is also an important control variable, and pressure control is highly correlated with liquid level control. It is necessary to ensure the integrity of the equipment, but also to ensure safety, followed by ensuring that the process of normal operation of the drum water. This time, the design is mainly for the unit steam temperature control system design. Steam temperature is one of the important indicators of boiler operation quality. It is too high and too low will significantly affect the power plant safety and economy. If the temperature of the steam is low, it will cause the power plant to increase the heat consumption and increase the axial thrust of the turbine to cause the thrust bearing to overload, but also cause the steam turbine to increase the final steam humidity, thus reducing the efficiency of the turbine, aggravating the erosion of the blade. On the contrary, the steam temperature is too high will make the super-heater wall metal strength decreased, and even burn the high temperature of the super-heater, the steam pipe and steam turbine high-pressure part will be damaged, seriously affecting safety. The boiler temperature control system mainly includes the adjustment of the superheated steam and the reheat steam temperature. The superheated steam temperature is the highest temperature in the boiler soda system. The stability of the steam temperature is very important for the safe and economical operation of the unit. Therefore, in the boiler operation, must ensure that the steam temperature in the vicinity of the specified value, and the temperature of the super-heater tube wall does not exceed the allowable working temperature.
Leisure education has an impact not only on individuals but also on the environment and society. The present study aimed to explore and describe experts’ knowledge and experience about leisure education to develop leadership among youth with physical disabilities. The present study used a qualitative research approach through an exploratory design to answer the research question. Five participants were purposefully recruited and selected based on their expertise in the topic of interest. Participants’ expertise ranged from leisure, recreation, youth and leadership. The participants had experience working in higher education institutions, and community projects, held doctorate qualifications, and have over ten years in this field. Data was collected online using Google Meet software using semi-structured interviews with open-ended questions. Data was analyzed using a thematic analysis framework and guidelines. The findings of this study suggest that youth with physical disabilities can develop personal capacity through leisure education programmes. Leisure education programmes can be meaningful to youth with physical disabilities and have a developmental impact, including leadership. Youth with physical disabilities’ capacities and abilities should be nurtured and protected to allow growth and independence. The implications are that leisure education programmes for leadership development must be intentional to achieve the intended outcome.
Copyright © by EnPress Publisher. All rights reserved.