Promoting travelling intention within social media is significant for stakeholders to grasp a new tourism market and cultivate a new model for development of tourism industry. This study aims to understand path of destination image affecting travelling intention, and to investigate the mediation role of perceived value, furthermore, to uncover the role of moderator of situational involvement. This paper conducts a survey on tourists visiting Guilin, collecting 435 questionnaires, and uses the structural equation modeling method to explore how the image of the tourism destination affects tourists’ willingness to travel. The research results indicate that cognitive image, emotional image, and projected image all have a significant positive impact on perceived value, perceived value as a significant mediator to bridge the relationship among the destination image and tourists’ travel intention. Furthermore, situational involvement plays a negative moderating role in the mediating effect of emotional value. This study endeavor will serve to enrich the understanding of perceived value theory, destination image theory, and tourism consumer behavior theory. It will also provide theoretical foundations and policy recommendations for guiding tourism consumer behavior, analyzing destination image perception, and destination marketing.
Relational database models offer a pathway for the storage, standardization, and analysis of factors influencing national sports development. While existing research delves into the factors linked with sporting success, there remains an unexplored avenue for the design of databases that seamlessly integrate quantitative analyses of these factors. This study aims to design a relational database to store and analyse quantitative sport development data by employing information technology tools. The database design was carried out in three phases: (i) exploratory study for context analysis, identification, and delimitation of the data scope; (ii) data extraction from primary sources and cataloguing; (iii) database design to allow an integrated analysis of different dimensions and production of quantitative indicators. An entity-relationship diagram and an entity-relationship model were built to organize and store information relating to sports, organizations, people, investments, venues, facilities, materials, events, and sports results, enabling the sharing of data across tables and avoiding redundancies. This strategy demonstrated potential for future knowledge advancement by including the establishment of perpetual data updates through coding and web scraping. This, in turn, empowers the continuous evaluation and vigilance of organizational performance metrics and sports development policies, aligning seamlessly with the journal’s focus on cutting-edge methodologies in the realm of digital technology.
This article focuses on studying how transportation connectivity affects Vietnam’s trade with Association of Southeast Asian Nations (ASEAN) countries. By using a gravity model, the article applies fixed effects (FE) and random effects (RE) to analyze panel data on trade, GDP, tariffs, border effects, and indicators. The number represents Vietnam’s transport connectivity with ASEAN countries from 2004 to 2021. Research results show that transport connectivity hurts Vietnam’s trade with other countries. ASEAN. The article proposes solutions for the Government and Vietnamese export enterprises to promote intra-ASEAN trade in the direction of increasing the added value of Vietnam’s imported and exported goods within ASEAN countries and balancing between Developing intra-ASEAN and foreign trade.
With the rapid increase in electric bicycle (e-bikes) use, the rate of associated traffic accidents has also escalated. Prior studies have extensively examined e-bike riders’ injury risks, yet there is a limited understanding of how their behavior contributes to these accidents. This study aims to explore the relationship between e-bike riders’ risk-taking behaviors and the incidence of traffic accidents, and to propose targeted safety measures based on these insights. Utilizing a mixed-methods approach, this research integrates quantitative data from traffic accident reports and qualitative observations from naturalistic studies. The study employs a binary logistic regression model to analyze risk factors and uses observational data to substantiate the model findings. The analysis reveals that assertive driving behaviors among e-bike riders, such as running red lights and speeding, significantly contribute to the high rate of accidents. Moreover, the lack of protective gear and inadequate safety training are identified as critical factors increasing the risk of severe injuries. The study concludes that comprehensive policy interventions, including stricter enforcement of traffic laws and mandatory safety training for e-bike riders, are essential to mitigate the risks associated with e-bike use. The findings advocate for an integrated approach to urban traffic management that enhances the safety of all road users, particularly vulnerable e-bike riders.
This research focuses on addressing critical driving safety issues on university campuses, particularly vehicular congestion, inadequate parking, and hazards arising from the interaction between vehicles and pedestrians. These challenges are common across campuses and demand effective solutions to ensure safe and efficient mobility. To address these issues, the study developed detailed microsimulation models tailored to the Victor Levi Sasso campus of the Technological University of Panama. The primary function of these models is to evaluate the effectiveness of various safety interventions, such as speed reducers and parking reorganization, by simulating their impact on traffic flow and accident risk. The models provide calculations of traffic parameters, including speed and travel time, under different safety scenarios, allowing for a comprehensive assessment of potential improvements. The results demonstrate that the proposed measures significantly enhance safety and traffic efficiency, proving the model’s effectiveness in optimizing campus mobility. Although the model is designed to tackle specific safety concerns, it also offers broader applicability for addressing general driving safety issues on university campuses. This versatility makes it a valuable tool for campus planners and administrators seeking to create safer and more efficient traffic environments. Future research could expand the model’s application to include a wider range of safety concerns, further enhancing its utility in promoting safer campus mobility.
The effectiveness and efficiency of e-learning system in industry significantly depend on users’ acceptance and adoption. This is specifically determined by external and internal factors represented by subjective norms (SN) and experience (XP), both believed to affect users’ perceived usefulness (PU) and perceived ease of use (PEOU). Users’ acceptance of e-learning system is influenced by the immensity of region, often hampered by inadequate infrastructure support. Therefore, this study aimed to investigate behavioral intention to use e-learning in the Indonesian insurance industry by applying Technology Acceptance Model (TAM). To achieve this objective, Jabotabek and Non-Jabotabek regions were used as moderating variables in all related hypotheses. An online survey was conducted to obtain data from 800 respondents who were Indonesian insurance industry employees. Subsequently, Structural Equation Model (SEM) was used to evaluate the hypotheses, and Multi-Group Analysis (MGA) to examine the role of region. The results showed that out of the seven hypotheses tested, only one was rejected. Furthermore, XP had no significant effect on PU, and the most significant correlation was found between PEOU and PU. In each relationship path model, the role of region (Jabodetabek and Non Jabodetabek) had no significant differences. These results were expected to provide valuable insights into the components of e-learning acceptability for the development of a user-friendly system in the insurance industry.
Copyright © by EnPress Publisher. All rights reserved.