This longitudinal study is dedicated to the evaluation of the comprehensive impact of educational reforms through a mixed research methodology which is a combination of the quantitative- and qualitative-oriented research methods to check the students’ outcomes. Data was collected in the span of [mention the time frame] from various data sources for instance standardized test scores, school performance statistics, and through open-ended qualitative evaluation from both students and teachers. Data analysis carried on after the reforms had been put in place revealed that there was a considerable rise in mean test scores and success graduation rates. Therefore, formative evaluation demonstrates the need for implementing reforms that will eventually help the students in boosting academic performance. Besides, there is no difference among investor opinions on teachers, administrators, and students who are involved with the implementation of the reforms. Stakeholders manifest this new assistance as an outcome of lasting improvements in curriculum quality, methods of teaching, and student participation. The study approaches two main challenges that are confronted with education reform that is resourcelessness and to society the change of the educational system can be more suitable for the students to excel academically and it can have an impact on the whole community. Even though this study makes important advancements toward the realization of the complex education implementation process and its effect on student academics, there are elements in which it can be criticized. Both quantitative and qualitative performance improvement is important as well as all the important stakeholder participation. This way the transformation process becomes layered. In other words, these results point to the necessity of planning interventions for longer periods that target the challenges and the forces that maintain the low levels of education performance by the counties.
In this paper advanced Sentiment Analysis techniques were applied to evaluate public opinions reported by rail users with respect to four major European railway companies, i.e., Trenitalia and Italo in Italy, SNCF in France and Renfe in Spain. Two powerful language models were used, RoBERTa and BERT, to analyze big amount of text data collected from a social platform dedicated to customers reviews, i.e., TrustPilot. Data concerning the four European railway companies were first collected and classified into subcategories related to different aspects of the railway sector, such as train punctuality, quality of on-board services, safety, etc. Then, the RoBERTa and BERT models were developed to understand context and nuances of natural language. This study provides a useful support for railways companies to promote strategies for improving their service.
Objectives: The unprecedented COVID-19 pandemic has intensified the stress on blood banks and deprived the blood sources due to the containment measures that restrict the movement and travel limitations among blood donors. During this time, Malaysia had a significant 40% reduction in blood supply. Blood centers and hospitals faced a huge challenge balancing blood demand and collection. The health care systems need a proactive plan to withstand the uncertain situation such as the COVID-19 pandemic. This study investigates the psychosocial factors that affect blood donation behavior during a pandemic and aims to propose evidence-based strategies for a sustainable blood supply. Study design: Qualitative design using focus group discussion (FGD) was employed. Methods: Data were acquired from the two FGDs that group from transfusion medicine specialists (N = 8) and donors (N = 10). The FGD interview protocol was developed based on the UTM Research Ethics Committee’s approval. Then, the data was analyzed using Nvivo based on the General Inductive Approach (GIA). Results: Analysis of the text data found that the psychology of blood donation during the pandemic in Malaysia can be classified into four main themes: (i) reduced donation; (ii) motivation of donating blood; (iii) trends of donation; and (iv) challenges faced by the one-off, occasional, and non-donors. Conclusions: Based on the emerging themes from the FGDs, this study proposes four psycho-contextual strategies for relevant authorities to manage sustainable blood accumulation during the pandemic: (1) develop standard operating procedure for blood donors; (2) organize awareness campaigns; (3) create a centralized integrated blood donors database; and (4) provide innovative Blood Donation Facilities.
Physical sampling of water on site is necessary for various applications like drinking water quality checking in lakes and checking for contaminants in freshwater systems. The use of water surface vehicles is a promising technology for monitoring and sampling water bodies, and they offer several advantages over traditional monitoring methods. This project involved designing and integrating a drone controller, water collection sampling contraption unit, and a surveillance camera system into a water surface vehicle (WSV). The drone controller unit is used to operate the boat from the starting location until the location of interest and then back to the starting location. The drone controller has an autopilot system where the operator can set a course and be able to travel following the path set, whereas the WSV will fight the external forces to keep itself in the right position. The water collection sampling unit is mounted onto WSV so when it travels to the location, it can start collecting and holding water samples until it returns to the start location. The field of view (FOV) surveillance camera helps the operator to observe the surrounding location during the operation. Experiments were conducted to determine the operational capabilities of the robot boat at the Ayer Keroh Lake. The water collection sampling contraption unit collected samples from 44 targeted areas of the lake. The comprehensive examination of 14 different water quality parameters were tested from the collected water samples provides insights into the factors influencing the pollution and observation of water bodies. The successful design and development of a water surface surveillance and pollution tracking vehicle marks the key achievements of this study. The developed collection and surveillance unit holds the potential for further refinement and integration onto various other platforms. They are offering valuable assistance in water body management, coastal surveillance, and pollution tracking. This system opens up new possibilities for comprehensive water body assessments, contributing to the advancement of sustainable and efficient water testing. Through careful sampling efforts, a thorough overview of the substances presents in the water collected from Ayer Keroh Lake has been compiled. This in-depth analysis provides important insights into the lake’s current condition, offering valuable information about its ecological health.
Many financial crises have occurred in recent decades, such as the International Debt Crisis of 1982, the East Asian Economic Crisis of 1997–2001, the Russian economic crisis of 1992–1997, the Latin American debt Crisis of 1994–2002, the Global Economic Recession of 2007–2009, which had a strong impact on international relations. The aim of this article is to create an econometric model of the indicator for identifying crisis situations arising in stock markets. The approach under consideration includes data for preprocessing and assessing the stability of the trend of time series using higher-order moments. The results obtained are compared with specific practical situations. To test the proposed indicator, real data of the stock indices of the USA, Germany and Hong Kong in the period World Financial Crisis are used. The scientific novelty of the results of the article consists in the analysis of the initial and given initial moments of high order, as well as the central and reduced central moments of high order. The econometric model of the indicator for identifying crisis situations arising considered in the work, based on high-order moments plays a pivotal role in crisis detection in stock markets, influencing financial innovations in managing the national economy. The findings contribute to the resilience and adaptability of the financial system, ultimately shaping the trajectory of the national economy. By facilitating timely crisis detection, the model supports efforts to maintain economic stability, thereby fostering sustainable growth and resilience in the face of financial disruptions. The model’s insights can shape the national innovation ecosystem by guiding the development and adoption of monetary and financial innovations that are aligned with the economy’s specific needs and challenges.
The objective of this article is to examine the provision of temporary exhibitions and events by Slovak museums and galleries, and to highlight their significance in the context of selected performances of these cultural attractions in the tourism sector. The article employs a secondary data analysis of the Ministry of Culture of the Slovak Republic and annual reports from 105 museums and 10 galleries in 2017, as well as 99 museums and 15 galleries in 2022. Correlation and regression analyses were employed to assess the dependence of variables. The results of the analysis confirm a direct, moderate dependence between the number of temporary exhibitions and events and the total number of visitors in museums and galleries. Additionally, the examination demonstrated that the exhibited activity has not had a positive effect on the revenues of museums and galleries. However, with an increasing number of events, their revenues from their own activities grew. The average revenues from one event were found to be higher in museums than in galleries.
Copyright © by EnPress Publisher. All rights reserved.