The objective of this study was to examine the impact of utilizing smart algorithms on enhancing the operational performance of sports facilities in the Kingdom of Saudi Arabia. These algorithms, based on principles and concepts of artificial intelligence, aim to achieve functions such as learning, decision-making, data analysis, pattern recognition, planning, and problem-solving. The study aimed to identify the extent to which smart algorithms are utilized in sports facilities, assess the level of operational performance, explore the correlation between the use of smart algorithms and operational performance, and predict the level of operational performance based on the use of smart algorithms. The study employed a descriptive approach, specifically utilizing a survey study method. Participants included chairmen and members of boards of directors, executive directors, sports directors, administrators, specialists, and members of various committees. The study sample was intentionally selected from different categories within the study population. Two questionnaires were used to collect data from 325 participants. The findings revealed a lack of utilization of smart algorithms in sports facilities in the Kingdom of Saudi Arabia, indicating a low level of operational performance. Additionally, a correlation was observed between the use of smart algorithms and operational performance, suggesting that the level of operational performance can be predicted based on the utilization of smart algorithms. The study concludes that the implementation of intelligent algorithms can enhance the operational performance of sports facilities in the Kingdom of Saudi Arabia. It provides valuable insights into the effects of utilizing smart algorithms on improving operational performance.
This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
Project risk management in the mining industry is necessary to identify, analyze and reduce uncertainty. The engineering features of mining enterprises, by their nature, require improved risk management tools. This article proves the relevance of creating a simulation model of the production process to reduce uncertainty when making investment decisions. The purpose of the study is to develop an algorithm for deciding on the economic feasibility of creating a simulation experiment. At the same time, the features and patterns of the cases for which the simulation experiment was carried out were studied. Criteria for feasibility assessment of the model introduction based on a qualitative parameters became the central idea for algorithm. The relevance of the formulated algorithm was verified by creating a simulation model of a potassium salt deposit with subsequent optimization of the production process parameters. According to the results of the experiment, the damage from the occurrence of a risk situations was estimated as a decrease in conveyor productivity by 32.6%. The proposed methods made it possible to minimize this risk of stops in the conveyor network and assess the lack of income due to the risk occurrences.
This paper investigates the evolving clustering and historical progression of “Asian regionalisms” concerning their involvement in multilateral treaties deposited in the United Nations system. We employ criteria such as geographic proximity, historical connections, cultural affinities, and economic interdependencies to identify twenty-eight candidate countries from East Asia, Southeast Asia, South Asia, and Central Asia for this empirical testing. Using a social network analysis approach, we model the network of these twenty-eight Asian state actors alongside 600 major treaties from the United Nations system, identifying clusters among Asian states by assessing similarities in their treaty participation behavior. Specifically, we observe dynamic changes in these clusters across three key historical eras: Post-war reconstruction and transformation (1945–1968), Cold War tensions and global transformations (1969–1989), and post-Cold War era and globalization (1990–present). Employing the Louvain cluster detection algorithm, the results reveal the evolution in cluster numbers and changes in membership status throughout the world timeline. The results also identify the current situation of six distinct Asian clusters based on states’ inclinations to engage or abstain from multilateral treaties across six policy domains. These findings provide a foundation for further research on the trajectories of Asian regionalisms amidst evolving global dynamics and offer insights into potential alliances, cooperation, or conflicts within the region.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
Copyright © by EnPress Publisher. All rights reserved.