This study examines the relationship between macroeconomic determinants and education levels in eight selected African oil-exporting countries (AOECs) over the period 2000–2022. Drawing on human capital theory, the paper scrutinizes the impact of factors such as income inequality, health outcome, economic growth, human development, unemployment, education expenditure, institutional quality, and energy consumption on education levels. Employing robust estimation techniques such as fixed effects (FE), random effects (RE), pooled mean group (PMG) and cross-section autoregressive distributed lag model (CS-ARDL), the study unveils vital static and dynamic interactions among these determinants and education levels. Findings reveal notable positive and significant connections between education levels and some of the variables—human capital development, institutional quality, government expenditure on education, and energy consumption, while income inequality demonstrates a consistent negative relationship. Unexpectedly, health outcomes exhibit a negative impact on education levels, warranting further investigation. Furthermore, the analysis deepens understanding of long-run and short-run relationships, highlighting, for example, the contradictory impact of gross domestic product (GDP) and unemployment on education levels in AOECs. Finally, the study recommends targeted human development programs, enhanced public investment in education, institutional reforms for good governance, and sustainable energy infrastructure development.
Electrical energy is known as an essential part of our day-to-day lives. Renewable energy resources can be regenerated through the natural method within a reasonably short time and can be used to bridge the gap in extended power outages. Achieving more renewable energy (RE) than the low levels typically found in today’s energy supply network will entail continuous additional integration efforts into the future. This study examined the impacts of integrating renewable energy on the power quality of transmission networks. This work considered majorly two prominent renewable technologies (solar photovoltaic and wind energy). To examine the effects, IEEE 9-bus (a transmission network) was used. The transmission network and renewable sources (solar photovoltaic and wind energy technologies) were modelled with MATLAB/SIMULINK®. The Newton-Raphson iteration method of solution was employed for the solution of the load flow owing to its fast convergence and simplicity. The effects of its integration on the quality of the power supply, especially the voltage profile and harmonic content, were determined. It was discovered that the optimal location, where the voltage profile is improved and harmonic distortion is minimal, was at Bus 8 for the wind energy and then Bus 5 for the solar photovoltaic source.
Credit policies for clean and renewable energy businesses play a crucial role in supporting carbon neutrality efforts to combat climate change. Clustering the credit capacity of these companies to prioritize lending is essential given the limited capital available. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are two robust machine learning algorithms for addressing complex clustering problems. Additionally, hyperparameter selection within these models is effectively enhanced through the support of a robust heuristic optimization algorithm, Particle Swarm Optimization (PSO). To leverage the strength of these advanced machine learning techniques, this paper aims to develop SVM and ANN models, optimized with the PSO, for the clustering problem of green credit capacity in the renewable energy industry. The results show low Mean Square Error (MSE) values for both models, indicating high clustering accuracy. The credit capabilities of wind energy, clean fuel, and biomass pellet companies are illustrated in quadrant charts, providing stakeholders with a clear view to adjust their credit strategies. This helps ensure the efficient operation of banking green credit policies.
In green construction, sustainable resources are essential. One such material is copper, which is widely utilized in electronics, transportation, manufacturing, and residential buildings. As a very useful material, it has many beneficial impacts on human life. Observed from the recent demand spike is in line with the overall trend and the current growing smelter construction in Indonesia. Researchers intend to adapt the existing Copper Smelting Plant Building into an environmentally friendly building as a part of the production chain, in addition to reducing public and environmental concerns about the consequences of this development. We have identified a disparity in cost, where the high cost of green buildings is an obstacle to its implementation to enhance the cost performance with increased renewable energy of the Smelter Construction Building, this study investigates the application of LEED parameters to evaluate green retrofit approaches through system dynamics. The most relevant features of the participant assessments were identified using the SEM-PLS approach, which is used to build and test statistical models of causal models. We have results for this Green Retrofitting study following significant variables according to the following guidelines: innovation, low-emission materials, renewable energy, daylighting, reducing indoor water usage, rainwater management, and access to quality transit.
This article using thematic and content analysis investigated the contribution of innovation in achieving sustainable economic development. The objective of the bibliometric research was to assess the literature on this subject it identified research trends, ideas, and authors who contributed to this area so that future research and policy directions could be suggested. The data was derived from the Scopus database and was extracted between January 2020 and February 2024 by applying inclusion and exclusion criteria. The Scopus database search yielded 66 articles, published between 2020 and February 2024. Scopus analytics and Microsoft Excel were used for descriptive analysis and VOS Viewer software was used for network visualization of keywords. The descriptive analysis showed the trajectory of research, the prolific authors, their publication outlets, authors affiliation, and county of origin of the documents. The prolific visualization showed five clusters: red, green, blue, purple, and yellow. The main clusters are economic development, alternative energy, sustainable development, and innovation. This research showed where consideration should be given to drive sustainability and sustainable economic development. This research outcome will assist government agencies, corporations, and non-profit organizations in planning appropriate action and policies to support innovative and renewable energy initiatives so that participation in those fields could enhance the opportunity to achieve sustainable economic development.
Building cooling load depends on heat gains from the outside environment. Appropriate orientation and masonry materials play vital roles in the reduction of overall thermal loads buildings. A net-zero energy building performance has been analyzed in order to ascertain the optimum orientation and wall material properties, under the climatic conditions of Owerri, Nigeria. Standard cooling load estimation techniques were employed for the determination of the diurnal interior load variations in a building incorporating renewable energy as the major energy source, and compared with the situation in a conventionally powered building. The results show a 19.28% reduction in the building’s cooling load when brick masonry was used for the wall construction. It was observed that a higher heat gain occurred when the building faced the East-West direction than when it was oriented in the North-South direction. Significant diurnal cooling loads variation as a result of radiation through the windows was also observed, with the east facing windows contributing significantly higher loads during the morning hours while the west facing windows contributed higher amounts in the evening. The economic analysis of the net-zero energy building showed an 11.63% reduction in energy cost compared to the conventional building, with a 7-year payback period for the use of Solar PV systems. Therefore, the concept of net-zero energy building will not only help in energy conservation, but also in cost savings, and the reduction of carbon footprint in the built environment.
Copyright © by EnPress Publisher. All rights reserved.