This study aims to investigate the relationship between internal and information integration within the supply chain (SCI-INTI and SCI-INFI), supply chain management (SCM) practices, and port operational performance (POP) in Oman’s container ports. Additionally, it explores the mediating role of SCM practices in the relationship between SCI-INTI, SCI-INFI, and POP in Oman. To meet the study’s objectives, a quantitative cross-sectional survey method was used. A total of 377 questionnaires were distributed to managers responsible for supply chain operations in the main departments at Sohar and Salalah ports, yielding 331 usable responses, with a response rate of 88 percent. The data collected were analyzed using partial least squares structural equation modeling (PLS-SEM). The results show that both internal and information integration within the supply chain have positive and statistically significant effects on the operational performance of Oman’s container ports (POP). Specifically, Supply Chain Integration with Internal Integration (SCI-INTI) significantly impacts POP (β = 0.249, t = 5.039, p < 0.001), and Supply Chain Integration with Information Integration (SCI-INFI) also significantly affects POP (β = 0.259, t = 4.966, p < 0.001). Additionally, SCI-INTI positively influences Supply Chain Management Practices (SCMP) (β = 0.381, t = 7.674, p < 0.001), as does SCI-INFI (β = 0.484, t = 9.878, p < 0.001). Furthermore, SCMP positively and significantly influences the operational performance of Oman’s container ports (β = 0.424, t = 7.643, p < 0.001). These findings contribute to the literature by emphasizing the significance of internal and information integration within the supply chain and SCM practices as strategic internal resources and capabilities that enhance operational performance in container ports. Understanding these elements enables decision-makers and policymakers within government port authorities and port operating companies to optimize internal resources and capabilities to improve port operational performance.
Due to the bounded rationality of decision-makers and the substitution effect of non-green products, retailers are not always profitable when selling green products. To assist retailers who may be disadvantaged in the game, this study constructs a two-stage green supply chain game model, considering the bounded rationality of decision-makers and the substitution effect of non-green products, and analyzes the impacts of two operational strategies that retailers can adopt—price-cutting strategy and early replenishment strategy. The research reveals that retailers tend to lower prices in the second stage when price reductions stimulate consumer purchases, enhancing their profitability. However, strategic retailers may raise prices in the first stage to create room for discounts later, potentially harming consumer interests. Contrary to expectations, anticipating future demand does not always improve supply chain profitability in the early replenishment strategy, which mainly depends on the market environment. Early replenishment deprives retailers of negotiation leverage in the second stage, and bulk orders may lead manufacturers to over-invest in green innovation. Therefore, this strategy is effective only when green innovation costs are low, consumer environmental awareness is high, or price sensitivity is low.
Coordination and integration among farms within agri-food chains are crucial to tackle the issue of fragmentation within the primary sector, both at the European and national level. The Italian agri-food system still complains about the need to aggregate supply to support market dynamics, especially for niche and quality products that characterize the Made in Italy. It is well known that the Italian agri-food sector is closely linked to the relationship between agriculture on one hand and culture/tradition on the other, which is reflected in the high number of quality products that have obtained EU PDO (Protected Designation of Origin) and PGI (Protected Geographical Indication) recognition. The development of vertical forms of coordination has found significant support in recent years from the integrated supply chain design approach, which is increasingly becoming an essential tool for implementing rural development policies. In this context, the study provides a comparison between companies that have joined the Integrated Supply Chain Projects of the Rural Development Program and those that have not applied. The aim is to highlight any differences in order to understand policy impact. The analysis is based on the Emilia-Romagna region Farm Accountancy Data Network (FADN) data, and the sample consists of more than 2 thousand farms. The statistical analysis conducted compares treated and non-treated using the Welch-t-test for independent unmatched samples. The main results show higher values for treated farms when structural variables are analyzed, like the utilized agricultural area or the agricultural work unit. In general, higher balance sheet performances emerged for treated farms. In conclusion, this study shows that the Integrated Supply Chain Projects represent a worthwhile tool both to increase cooperation, food quality, and to enhance a competitive agricultural sector.
Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
Innovation has always been a key driver of economic development, particularly in the context of small and medium-sized enterprises (SMEs). Despite their significant contributions, many of these enterprises currently lack strong research and development capabilities, face challenges in innovation investment, and struggle to produce high-quality innovative results. To address these issues and overcome funding obstacles, many SMEs are turning to supply chain finance (SCF) as a supplementary financing method. This study utilizes stata16 and fixed effects models to analyze the impact and mechanism of SCF on enterprise innovation performance (EIP), focusing on companies listed on the SME Board and GEM in Shenzhen, China from 2011 to 2020. The findings reveal that SCF can effectively enhance enterprise innovation output, facilitating the conversion of resources into high-quality innovation results. Additionally, the study demonstrates that supply chain concentration acts as a mediator between SCF and EIP. Moreover, SCF is found to significantly boost EIP with low supplier concentrations and high customer concentrations. This suggests that SMEs encounter obstacles to innovation from suppliers and customers, and SCF may not fully address the challenges posed by these relationships. Overall, this research offers new empirical insights into the economic implications of companies adopting SCF, providing valuable guidance for enterprises in optimizing innovation decisions and for the government in enhancing supplier and customer information disclosure systems.
Copyright © by EnPress Publisher. All rights reserved.