This work investigated the photocatalytic properties of polymorphic nanostructures based on silica (SiO2) and magnetite (Fe3O4) for the photodegradation of tartrazine yellow dye. In this sense, a fast, easy, and cheap synthesis route was proposed that used sugarcane bagasse biomass as a precursor material for silica. The Fourier transform infrared (FTIR) spectroscopy results showed a decrease in organic content due to the chemical treatment with NaOH solution. This was confirmed through the changes promoted in the bonds of chromophores belonging to lignin, cellulose, and hemicellulose. This treated biomass was calcined at 800 ℃, and FTIR and X-ray diffraction (XRD) also confirmed the biomass ash profile. The FTIR spectrum showed the formation of silica through stretching of the chemical bonds of the silicate group (Si-O-Si), which was confirmed by DXR with the predominance of peaks associated with the quartz phase. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) confirmed the morphological and chemical changes due to the chemical and thermal treatments applied to this biomass. Using the coprecipitation method, we synthesized Fe3O4 nanoparticles (Np) in the presence of SiO2, generating the material Fe3O4/SiO2-Np. The result was the formation of nanostructures with cubic, spherical, and octahedral geometries with a size of 200 nm. The SEM images showed that the few heterojunctions formed in the mixed material increased the photocatalytic efficiency of the photodegradation of tartrazine yellow dye by more than two times. The degradation percentage reached 45% in 120 min of reaction time. This mixed material can effectively decontaminate effluents composed of organic pollutants containing azo groups.
The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.
This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
Creating a crop type map is a dominant yet complicated model to produce. This study aims to determine the best model to identify the wheat crop in the Haridwar district, Uttarakhand, India, by presenting a novel approach using machine learning techniques for time series data derived from the Sentinel-2 satellite spanned from mid-November to April. The proposed methodology combines the Normalized Difference Vegetation Index (NDVI), satellite bands like red, green, blue, and NIR, feature extraction, and classification algorithms to capture crop growth's temporal dynamics effectively. Three models, Random Forest, Convolutional Neural Networks, and Support Vector Machine, were compared to obtain the start of season (SOS). It is validated and evaluated using the performance metrics. Further, Random Forest stood out as the best model statistically and spatially for phenology parameter extraction with the least RMSE value at 19 days. CNN and Random Forest models were used to classify wheat crops by combining SOS, blue, green, red, NIR bands, and NDVI. Random Forest produces a more accurate wheat map with an accuracy of 69% and 0.5 MeanIoU. It was observed that CNN is not able to distinguish between wheat and other crops. The result revealed that incorporating the Sentinel-2 satellite data bearing a high spatial and temporal resolution with supervised machine-learning models and crop phenology metrics can empower the crop type classification process.
Open-source software (OSS) has emerged as a transformative tool whose implementation has the potential to modernise many libraries around the world in the digital age. OSS is a type of software which permits its users to inspect, share, modify, and enhance through its freely accessed source code. The accessibility and openness of the source code permits users to manipulate, change, and improve the way in which a piece of software, program, or application works. OSS solutions therefore provide cost-effective alternatives that enable libraries to enhance their technological infrastructure without being constrained by proprietary systems. Hence, many countries have initiated and formulated policies and legislative frameworks to support the implementation and use of OSS library solutions such as DSpace, Alfresco, and Greenstone. The purpose of the study reported on was to investigate the leveraging of OSS to modernise public libraries in South Africa. Content analysis was adopted as the research methodology for this qualitative study, which was based on a literature review integrating insights from the researchers’ experiences with the use of OSS in libraries The findings of the study reveal that the use of OSS has the potential to modernise public libraries, especially those located outside cities or urban areas. These libraries are often less well equipped with the necessary technology infrastructure to meet the demands of the digital age, such as online books and open access materials. The study culminated in an OSS framework that may be implemented to modernise public libraries. This framework may help public libraries to integrate OSS solutions and further allow users access to digital services.
Instant and accurate evaluation of drug resistance in tumors before and during chemotherapy is important for patients with advanced colon cancer and is beneficial for prolonging their progression-free survival time. Here, the possible biomarkers that reflect the drug resistance of colon cancer were investigated using proton magnetic resonance spectroscopy (1H-MRS) in vivo. SW480[5-fluorouracil(5-FU)-responsive] and SW480/5-FU (5-FU-resistant) xenograft models were generated and subjected to in vivo 1H-MRS examinations when the maximum tumor diameter reached 1–1.5 cm. The areas under the peaks for metabolites, including choline (Cho), lactate (Lac), glutamine/glutamate (Glx), and myo-inositol (Ins)/creatine (Cr) in the tumors, were analyzed between two groups. The resistance-related protein expression, cell morphology, necrosis, apoptosis, and cell survival of these tumor specimens were assessed. The content for tCho, Lac, Glx, and Ins/Cr in the tumors of the SW480 group was significantly lower than that of the SW480/5-FU group (P < 0.05). While there was no significant difference in the degree of necrosis and apoptosis rate of tumor cells between the two groups (P > 0.05), the tumor cells of the SW480/5-FU showed a higher cell density and larger nuclei. The expression levels of resistance-related proteins (P-gp, MPR1, PKC) in the SW480 group were lower than those in the SW480/5-FU group (P < 0.01). The survival rate of 5-FU-resistant colon cancer cells was significantly higher than that of 5-FU-responsive ones at 5-FU concentrations greater than 2.5 μg/mL (P < 0.05). These results suggest that alterations in tCho, Lac, Glx1, Glx2, and Ins/Cr detected by 1H-MRS may be used for monitoring tumor resistance to 5-FU in vivo.
Copyright © by EnPress Publisher. All rights reserved.