The coupling coordination degree model is used to analyze the change law of the inherent coupling relationship between the forest economy and the ecological environment system in Heilongjiang Province from 2006 to 2018 and its causes. The results show that by combining the coupling relationship with the relative priority of under-forest economic development, the coupling relationship change can be divided into three stages, the coupling coordination degree from 2006 to 2009 is mainly on the verge of imbalance, and the under-forest economic development lags behind the development of the ecological environment. From 2010 to 2012, the coupling coordination degree changed from the reluctant coupling stage to the stage on the verge of imbalance, and the forest economy was ahead of the ecological environment development. From 2013 to 2018, the degree of coupling and coordination was in the reluctant coupling stage, and the under-forest economy and the ecological environment continued to develop in synchronize and in harmony. Therefore, according to the research results, it is proposed to establish the principle of ecological priority, adhere to the development of characteristics, improve the level of science and technology, and rationally develop the under-forest economic industry, so as to promote the coupling and coordinated development of the under-forest economy and ecological environment system in Heilongjiang Province.
Distributed biomass energy technology has strong adaptability to the types of raw materials, flexible project scale, can meet the needs of special users, better economy in small scale, easier commercial development, in line with the characteristics of biomass resources and China’s national conditions. The distributed utilization of biomass energy mainly includes biomass briquette fuel and biogas. The key technologies include biomass briquette fuel processing and combustion, large and medium-sized biogas engineering technology, biomass gasification pyrolysis and gas utilization. At present, China’s distributed biomass energy technology is mainly in the stage of technological improvement and application demonstration. It is expected that by 2030, most of the key technologies will be basically mature and have the conditions for industrialization. The main development direction of China’s distributed biomass energy industry is the replacement of traditional coal-fired gas, urban/rural clean living energy supply, and rural ecological environmental protection. The pollution caused by burning coal/fuel oil, and at the same time centering on the national new urbanization strategy, provide sustainable clean energy for the construction of new rural areas, and improve the level of rural ecological and environmental protection. At present, the main bottleneck restricting the development of distributed biomass energy industry is economy and reliability. The state should increase investment in technological innovation and policy support, convert the environmental and social benefits of biomass energy into cost benefits, and promote biomass energy. The development of the industry can be distributed and utilized.
Increasingly, U.S. cities are focusing on transit-oriented development (TOD) policies to expand the stock of higher-density, mixed-use development near public transit stations within the context of a transit corridor and, in most cases, a regional metropolis. A TOD zone relies on a regulatory and institutional environment, public and private participation and investment, and development incentives to create vibrant, people-oriented communities and mobility options and to support business development. TODs provide local governments with more tax revenues due to increased property values (and, as applicable, income and sales tax revenues), but most planning for TODs ignores the non-transit infrastructure costs of increasing development density. This study focused on determining the water and sewer infrastructure costs for TOD zones along a rail line in southeast Florida. The finding was that millions of dollars in funds are needed to meet those water and sewer needs and that few are currently planned as a part of community capital improvement programs.
COVID-19 and the economic response have amplified and changed the nature of development challenges in fundamental ways. Global development cooperation should adapt accordingly. This paper lays out the urgency for new methods of development cooperation that can deliver resource transfers at scale, oriented to addressing climate change and with transparency and better governance. It looks at what is actually happening to major donor countries’ development cooperation programs and where the principal gaps lie, and offers some thoughts on how to move forward, notwithstanding the clear geopolitical rivalries that are evident.
The most immediate challenge is to provide a level of liquidity support to countries ravaged by the global economic downturn. Many developing countries will see double-digit declines in GDP, with some recording downturns not seen in peacetime. Alongside the short-term challenge of recovery, COVID-19 has laid bare longer-term trends that have pointed for some time to the lack of sustainability—environmental, social, and governance—in the way economic development was occurring in many places, including in advanced economies. This new landscape has significant implications for development cooperation in terms of scale, development/climate co-benefits, and transparency and accountability.
Copyright © by EnPress Publisher. All rights reserved.