The construction of researcher profiles is crucial for modern research management and talent assessment. Given the decentralized nature of researcher information and evaluation challenges, we propose a profile system for Chinese researchers based on unsupervised machine learning and algorithms. This system builds comprehensive profiles based on researchers’ basic and behavior information dimensions. It employs Selenium and Web Crawler for real-time data retrieval from academic platforms, utilizes TF-IDF and BERT for expertise recognition, DTM for academic dynamics, and K-means clustering for profiling. The experimental results demonstrate that these methods are capable of more accurately mining the academic expertise of researchers and performing domain clustering scoring, thereby providing a scientific basis for the selection and academic evaluation of research talents. This interactive analysis system aims to provide an intuitive platform for profile construction and analysis.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
The failure to achieve sustainable development in South Africa is due to the inability to deliver quality and adequate health services that would lead to the achievement of sustainable human security. As we live in an era of digital technology, Machine Learning (ML) has not yet permeated the healthcare sector in South Africa. Its effects on promoting quality health services for sustainable human security have not attracted much academic attention in South Africa and across the African continent. Hospitals still face numerous challenges that have hindered achieving adequate health services. For this reason, the healthcare sector in South Africa continues to suffer from numerous challenges, including inadequate finances, poor governance, long waiting times, shortages of medical staff, and poor medical record keeping. These challenges have affected health services provision and thus pose threats to the achievement of sustainable security. The paper found that ML technology enables adequate health services that alleviate disease burden and thus lead to sustainable human security. It speeds up medical treatment, enabling medical workers to deliver health services accurately and reducing the financial cost of medical treatments. ML assists in the prevention of pandemic outbreaks and as well as monitoring their potential epidemic outbreaks. It protects and keeps medical records and makes them readily available when patients visit any hospital. The paper used a qualitative research design that used an exploratory approach to collect and analyse data.
The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
Copyright © by EnPress Publisher. All rights reserved.