A systemic and synthetic review of the anatomy of the temporomandibular joint in magnetic resonance imaging was developed for its evaluation. The temporomandibular joint is an anatomical structure composed of bones, muscles, ligaments and an articular disc that allows important physiological movements, such as mandibular opening, closing, protrusion, retrusion and lateralization. Magnetic resonance imaging is an imaging technique that does not use ionizing radiation and is more specific for the evaluation and interpretation of soft tissues, due to its high resolution, so it has an important role in the diagnosis of various maxillofacial pathologies, which is why the dentist should have knowledge of the structures and functions of the temporomandibular joint through magnetic resonance imaging. The review demonstrates the importance of magnetic resonance imaging in the study of the anatomy of the temporomandibular joint, in addition to mentioning the advantages provided by this imaging technique such as its good detail of the soft tissues in its different sequences and the non-use of ionizing radiation to obtain its images.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
A Detailed geophysical investigation was conducted on Knossos territory of Crete Island. Main scope was the detection of underground archaeological settlements. Geophysical prospecting applied by an experienced geophysical team. According to area dimensions in relation to geological and structural conditions, the team designed specific geophysical techniques, by adopted non-catastrophic methods. Three different types of geophysical techniques performed gradually. Geophysical investigation consisted of the application of geoelectric mapping and geomagnetic prospecting. Electric mapping focusses on recording soil resistance distribution. Geomagnetic survey was performed by using two different types of magnetometers. Firstly, recorded distribution of geomagnetic intensity and secondly alteration of vertical gradient. Measured stations laid along the south-north axis with intervals equal to one meter. Both magnetometers were adjusted on a quiet magnetic station. Values were stored in files readable by geophysical interpretation software in XYZ format. Oasis Montaj was adopted for interpretation of measured physical properties distribution. Interpretation results were illustrated as color scale maps. Further processing applied on magnetic measurements. Results are confirmed by overlaying results from three different techniques. Geoelectric mapping contributed to detection of a few archaeological targets. Most of them were recorded by geomagnetic technique. Total intensity aimed to report the existence of magnetized bodies. Vertical gradient detected subsurface targets with clearly geometrical characteristics.
Objective: to determine the diagnostic performance of magnetic resonance hysterosalpingography (HSG-MRI), using laparoscopy as the reference method. Materials and methods: 22 patients were included. All underwent HSG-MRI with a 1.5 Tesla resonator and then laparoscopy with chromotubation. Two radiologists examined the MRIs, determining tubal patency by consensus. Descriptive and diagnostic performance analyses were performed. Results: HSG-MRI had a success rate of 91%. Study duration was 49 ± 15 minutes, volume injected 26 ± 16 cm3 and pain scale 30 ± 19 out of 100. Sensitivity and specificity of HSG-MRI were 100% for global and left Cotte test, and 25% and 93.3% for right Cotte test, respectively. There were 2 minor complications and no major complications. Discussion: our initial results demonstrated high sensitivity and specificity. Although other studies analyzed the ability of HSG-MRI to assess tubal patency with good results, the use of a flawed reference standard left room for reasonable doubt, preventing a recommendation based on solid evidence. However, when comparing our results with those published, we observed a high degree of concordance insofar as the positive effusion is correctly diagnosed with a specificity of 100% or with a percentage close to this figure.
This article explored mineral resources and their relation to structural settings in the Central Eastern Desert (CED) of Egypt. Integration of remote sensing (RS) with aeromagnetic (AMG) data was conducted to generate a mineral predictive map. Several image transformation and enhancement techniques were performed to Landsat Operational Land Imager (OLI) and Shuttle Radar Topography Mission (SRTM) data. Using band ratios and oriented principal component analysis (PCA) on OLI data allowed delineating hydrothermal alteration zones (HAZs) and highlighted structural discontinuity. Moreover, processing of the AMG using Standard Euler deconvolution and residual magnetic anomalies successfully revealed the subsurface structural features. Zones of hydrothermal alteration and surface/subsurface geologic structural density maps were combined through GIS technique. The results showed a mineral predictive map that ranked from very low to very high probability. Field validation allowed verifying the prepared map and revealed several mineralized sites including talc, talc-schist, gold mines and quartz veins associated with hematite. Overall, integration of RS and AMG data is a powerful technique in revealing areas of potential mineralization involved with hydrothermal processes.
In the current era, electromagnetic radiation is everywhere. Every day electromagnetic radiation and static electricity caused by a variety of hazards. So, anti-electromagnetic radiation and anti-static awareness gradually enjoys popular support, more attention are gained by people on the anti-electromagnetic radiation and anti-static. This caused radiation protection and anti-static clothing industry’s rise by the day. Radiation protection and anti-static clothing will enter various households to provide a certain amount of protection to the people's health. We discuss two parts in this paper, specifically from the effects of the electromagnetic radiation and electrostatic effects which started on radiation clothing and anti-static clothing. The main contents of this paper are as follows: The first part of the definition of electromagnetic radiation and its brief introduction, while explaining the types of electromagnetic radiation and electromagnetic radiation sources in daily lives, followed by the emphasis of serious harms on electromagnetic radiation on human health It is precisely because of electromagnetic radiation on people's lives have serious threat, that makes the development of radiation protection. This follows the basic introduction of the radiation suit and the development of radiation protection clothings. The development of radiation protection suits is an established industry. Materials made of radiation protection are constantly changing, but their basic working principle has not changed. Followed by the introduction of the basic principles of radiation protection clothings, we theoretically present specific analysis and demonstration. However, the theoretical analysis and practice is often consists a certain gap, so we highlight a few actual situations on the impact of radiation protection clothings. Finally, we present a simple discussion on wide range of applications of radiation protection clothings. The thought process of second part is similar as the first part, respectively, we introduce the health hazards and the impact on people's lives of electrostatic effect and static electricity . Followed by that it is the basic principles, relevant analysis and discussion of anti-static clothing Finally, we provide the detailed explanation of the application of anti-static clothing.
Copyright © by EnPress Publisher. All rights reserved.