Preserving roads involves regularly evaluating government policy through advanced assessments using vehicles with specialized capabilities and high-resolution scanning technology. However, the cost is often not affordable due to a limited budget. Road surface surveys are highly expected to use low-cost tools and methods capable of being carried out comprehensively. This research aims to create a road damage detection application system by identifying and qualifying precisely the type of damage that occurs using a single CNN to detect objects in real time. Especially for the type of pothole, further analysis is to measure the volume or dimensions of the hole with a LiDAR smartphone. The study area is 38 province’s representative area in Indonesia. This research resulted in the iRodd (intelligent-road damage detection) for detection and classification per type of road damage in real-time object detection. Especially for the type of pothole damage, further analysis is carried out to obtain a damage volume calculation model and 3D visualization. The resulting iRodd model contributes in terms of completion (analyzing the parameters needed to be related to the road damage detection process), accuracy (precision), reliability (the level of reliability has high precision and is still within the limits of cost-effective), correct prediction (four-fifths of all positive objects that should be identified), efficient (object detection models strike a good balance between being able to recognize objects with high precision and being able to capture most objects that would otherwise be detected-high sensitivity), meanwhile, in the calculation of pothole volume, where the precision level is established according to the volume error value, comparing the derived data to the reference data with an average error of 5.35% with an RMSE value of 6.47 mm. The advanced iRodd model with LiDAR smartphone devices can present visualization and precision in efficiently calculating the volume of asphalt damage (potholes).
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Falling is one of the most critical outcomes of loss of consciousness during triage in emergency department (ED). It is an important sign requires an immediate medical intervention. This paper presents a computer vision-based fall detection model in ED. In this study, we hypothesis that the proposed vision-based triage fall detection model provides accuracy equal to traditional triage system (TTS) conducted by the nursing team. Thus, to build the proposed model, we use MoveNet, a pose estimation model that can identify joints related to falls, consisting of 17 key points. To test the hypothesis, we conducted two experiments: In the deep learning (DL) model we used the complete feature consisting of 17 keypoints which was passed to the triage fall detection model and was built using Artificial Neural Network (ANN). In the second model we use dimensionality reduction Feature-Reduction for Fall model (FRF), Random Forest (RF) feature selection analysis to filter the key points triage fall classifier. We tested the performance of the two models using a dataset consisting of many images for real-world scenarios classified into two classes: Fall and Not fall. We split the dataset into 80% for training and 20% for validation. The models in these experiments were trained to obtain the results and compare them with the reference model. To test the effectiveness of the model, a t-test was performed to evaluate the null hypothesis for both experiments. The results show FRF outperforms DL model, and FRF has same accuracy of TTS.
Complex security systems are designed to elevate physical security. Besides people’s first-hand experience of being secured, there is a secondary sensation of anxiety while being watched which should be given a particular emphasis. In this paper, first the Security & Happiness by Design Framework is proposed which is based on research findings in psychology. After a brief literature review on scholarly works addressing the intersection between security and psychology. The concept presented by HIBLISS, the Happiness Initiated Behaviour Led Intelligence Security System, underscores the integration of user well-being, behavioral analysis, and advanced technology within security frameworks. Specifically, the case study of the Jewel Airport in Singapore is cited to enhance the concept’s applicability, detailing its advantages and its role in a holistic risk assessment methodology.
Copyright © by EnPress Publisher. All rights reserved.