This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
The present work conducts a comprehensive thermodynamic analysis of a 150 MWe Integrated Gasification Combined Cycle (IGCC) using Indian coal as the fuel source. The plant layout is modelled and simulated using the “Cycle-Tempo” software. In this study, an innovative approach is employed where the gasifier's bed material is heated by circulating hot water through pipes submerged within the bed. The analysis reveals that increasing the external heat supplied to the gasifier enhances the hydrogen (H2) content in the syngas, improving both its heating value and cold gas efficiency. Additionally, this increase in external heat favourably impacts the Steam-Methane reforming reaction, boosting the H2/CH4 ratio. The thermodynamic results show that the plant achieves an energy efficiency of 44.17% and an exergy efficiency of 40.43%. The study also identifies the condenser as the primary source of energy loss, while the combustor experiences the greatest exergy loss.
Building cooling load depends on heat gains from the outside environment. Appropriate orientation and masonry materials play vital roles in the reduction of overall thermal loads buildings. A net-zero energy building performance has been analyzed in order to ascertain the optimum orientation and wall material properties, under the climatic conditions of Owerri, Nigeria. Standard cooling load estimation techniques were employed for the determination of the diurnal interior load variations in a building incorporating renewable energy as the major energy source, and compared with the situation in a conventionally powered building. The results show a 19.28% reduction in the building’s cooling load when brick masonry was used for the wall construction. It was observed that a higher heat gain occurred when the building faced the East-West direction than when it was oriented in the North-South direction. Significant diurnal cooling loads variation as a result of radiation through the windows was also observed, with the east facing windows contributing significantly higher loads during the morning hours while the west facing windows contributed higher amounts in the evening. The economic analysis of the net-zero energy building showed an 11.63% reduction in energy cost compared to the conventional building, with a 7-year payback period for the use of Solar PV systems. Therefore, the concept of net-zero energy building will not only help in energy conservation, but also in cost savings, and the reduction of carbon footprint in the built environment.
The co-hydrothermal carbonization of biomasses has shown many advantages on charcoal yield, carbonization degree, thermal-stability of hydrocar and energy recovered. The goal of this study is to investigate the effect of co-combustion of cattle manure and sawdust on energy recovered. The results show that ash content ranged between 10.38%–20.00%, indicating that the proportion of each variable influences energy recovered. The optimum is obtained at 51% cattle manure and 49% sawdust revealing 37% thermal efficiency and 3.9 kW fire power. These values are higher compared to cattle manure individually which gives values of 30% and 2.3 kW respectively for thermal efficiency and fire power. Thus, the mixture of biomasses enhances energy recovered both in combustion and hydrothermal carbonization. Volatile matter is lower in mixture predicting that the flue gas releases is lower during combustion. Fixed carbon is higher in mixture predicting that energy recovered increases during the combustion of mixture than cattle manure individually. Higher Carbon content was noticed in mixture than cattle manure indicating that the incorporation of sawdust enhances heating value. The incorporation of sawdust in cattle manure can also enhance energy recovered and is more suitable for domestic and industrial application.
Global warming is a thermodynamic problem. When excess heat is added to the climate system, the land warms more quickly than the oceans due to the land’s reduced heat capacity. The oceans have a greater heat capacity because of their higher specific heat and the heat mixing in the upper layer of the ocean. Thermodynamic Geoengineering (TG) is a global cooling method that, when deployed at scale, would generate 1.6 times the world’s current supply of primary energy and remove carbon dioxide (CO2) from the atmosphere. The cooling would mirror the ostensible 2008–2013 global warming hiatus. At scale, 31,000 1-gigawatt (GW) ocean thermal energy conversion (OTEC) plants are estimated to be able to: a) displace about 0.8 watts per square meter (W/m2) of average global surface heat from the surface of the ocean to deep water that could be recycled in 226-year cycles, b) produce 31 terawatts (TW) (relative to 2019 global use of 19.2 TW); c) absorb about 4.3 Gt CO2 per year from the atmosphere by cooling the surface. The estimated cost of these plants is $2.1 trillion per year, or 30 years to ramp up to 31,000 plants, which are replaced as needed thereafter. For example, the cost of world oil consumption in 2019 was $2.3 trillion for 11.6 TW. The cost of the energy generated is estimated at $0.008/KWh.
Copyright © by EnPress Publisher. All rights reserved.