In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
This study examines conditions that impact PPP delivery success or failure in the roadways sector in India using Qualitative Comparative Analysis. QCA is well-suited for problems where multiple factors combine to create pathways leading to an outcome. Past investigations have compared PPP and non-PPP project delivery performance, but this study examines performance within PPPs by uncovering a set of conditions that combine to influence the success or failure road PPP project delivery in India. Based on data from 21 cases, pathways explaining project delivery success or failure were identified. Specifically, PPPs with high concessionaire equity investment and low regional industrial activity led to project delivery success. Projects with lower concessionaire equity investment and low reliance on toll revenue and with either: (a) high project technical complexity or (b) high regional industrial activity, led to project delivery failure. The pathways identified did not have coverage values that they were extremely strong. Coverage strength was hindered by lack of access to information on additional conditions that could be configurationally important. Further, certain characteristics of the Indian market limit generalization. Identification of combinations of conditions leading to PPP project delivery success or failure improves knowledge of the impacts of structure and characteristics of these complex arrangements. This study is one of the first to use fuzzy QCA to understand project delivery success/failure in road PPP projects. Moreover, this study takes into account factors specific to a sector and delivery mode to explain project delivery performance.
The debate on relocating Indonesia’s national capital from Jakarta stems from critical issues such as overpopulation, social inequality, environmental degradation, and natural disaster risks. These challenges highlight the need to reassess Jakarta’s viability as the nation’s administrative center. This study evaluates Indonesia’s readiness to address the complexities of relocation by analyzing Jakarta’s socio-economic, political, cultural, and geographical conditions. Using a systematic literature review (SLR) with a qualitative approach, the research explores key questions: Do Jakarta’s conditions necessitate relocation? What challenges might arise from the move? How prepared is Indonesia to tackle these challenges? The SLR process includes defining questions, sourcing literature from reputable databases, applying inclusion/exclusion criteria, and synthesizing data for analysis. Findings reveal Jakarta’s multifaceted challenges, including social disparities, environmental degradation, disaster risks, and governance issues, which emphasize the urgency of considering relocation. However, the study also identifies significant hurdles, such as high costs, logistical complexities, potential social conflicts, and environmental risks at the new capital site. Relocating the capital is a strategic and complex undertaking that requires meticulous planning. Indonesia must weigh Jakarta’s current issues, address potential relocation challenges, and ensure readiness for risk mitigation and sustainable development. Comprehensive and thoughtful planning is essential to achieve a successful and balanced transition.
Infrastructure decision-making has traditionally been focused on the use of cost-benefit analysis (CBA) and multicriteria decision analysis (MCDA). Nevertheless, there remains no consensus in the infrastructure sector regarding a favored approach that comprehensively integrates resilience principles with those tools. This review focuses on how resilience has been evaluated in infrastructure projects. Initially, 400 papers were sourced from Web of Science and Scopus. After a preliminary review, 103 papers were selected, and ultimately, the focus was narrowed down to 56 papers. The primary aim was to uncover limitations in both CBA and MCDA, exploring various strategies for amalgamating them and enhancing their potential to foster resilience, sustainability, and other infrastructure performance aspects. Results were classified based on different rationalities: i) objectivist, ii) conformist, iii) adjustive, and iv) reflexive. The analysis revealed that while both CBA and MCDA contribute to decision-making, their perceived strengths and weaknesses differ depending on the chosen rationality. Nonetheless, embracing a broader perspective, fostering participatory methods, and potentially integrating both approaches seem to offer more promising avenues for assessing the resilience of infrastructures. The goal of this research proposal is to devise an integrated approach for evaluating the long-term sustainability and resilience of infrastructure projects and constructed assets.
Copyright © by EnPress Publisher. All rights reserved.