Optimizing Storage Location Assignment (SLA) is essential for improving warehouse operations, reducing operational costs, travel distances and picking times. The effectiveness of the optimization process should be evaluated. This study introduces a novel, generalized objective function tailored to optimize SLA through integration with a Genetic Algorithm. The method incorporates key parameters such as item order frequency, storage grouping, and proximity of items frequently ordered together. Using simulation tools, this research models a picker-to-part system in a warehouse environment characterized by complex storage constraints, varying item demands and family-grouping criteria. The study explores four scenarios with distinct parameter weightings to analyze their impact on SLA. Contrary to other research that focuses on frequency-based assignment, this article presents a novel framework for designing SLA using key parameters. The study proves that it is advantageous to deviate from a frequency-based assignment, as considering other key parameters to determine the layout can lead to more favorable operations. The findings reveal that adjusting the parameter weightings enables effective SLA customization based on warehouse operational characteristics. Scenario-based analyses demonstrated significant reductions in travel distances during order picking tasks, particularly in scenarios prioritizing ordered-together proximity and group storage. Visual layouts and picking route evaluations highlighted the benefits of balancing frequency-based arrangements with grouping strategies. The study validates the utility of a tailored generalized objective function for SLA optimization. Scenario-based evaluations underscore the importance of fine-tuning SLA strategies to align with specific operational demands, paving the way for more efficient order picking and overall warehouse management.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
This study investigates the optimization of ride-sharing services (RSS) on the ride-hailing service (RHS) providers in Bangladesh. This study employed an explanatory sequential mixed method research design- a qualitative study followed by a quantitative one. Qualitative data were collected through focus group discussions and in-depth interviews with twenty (20) riders and drivers in Bangladesh, and quantitative data were collected from 300 respondents consisting of riders and drivers using a convenience sampling technique. Factor analysis and hierarchical cluster analysis were applied to the data analysis. The qualitative analysis reveals several significant factors associated with RSS and RHS, including cost efficiency, fare, fuel consumption, traffic congestion, carbon emissions, environmental pollution, employment opportunities, business growth, and security. The quantitative results indicate that using RSS is associated with more significant benefits than RHS in various aspects, including cost efficiency, fare, fuel consumption, traffic congestion, carbon emissions, environmental pollution, employment opportunities, and expansion of the automobile industry. The findings may assist policymakers in understanding how RSS can yield more incredible economic, environmental, and social benefits than RHS by analyzing fare sharing among passengers, carbon emissions, fuel consumption, and the expansion of the vehicle markets etc. Therefore, the government can formulate distinct policies for RSS holders due to their contributions to economic, social, and environmental concerns. While RHS services are available in many cities in Bangladesh, this study considered only Dhaka and Sylhet cities. Thus, future studies can consider more respondents from other cities for a holistic understanding.
Heat stress amplified by climate change causes excessive reductions in labor capacity, work injuries, and socio-economic losses. Yet studies of corresponding impact assessments and adaptation developments are insufficient and incapable of effectively dealing with uncertain information. This gap is caused by the inability to resolve complex channels involving climate change, labor relations, and labor productivity. In this paper, an optimization-based productivity restoration modeling framework is developed to bridge the gap and support decision-makers in making informed adaptation plans. The framework integrates a multiple-climate-model ensemble, an empirical relationship between heat stress and labor capacity, and an inexact system costs model to investigate underlying uncertainties associated with climate and management systems. Optimal and reliable decision alternatives can be obtained by communicating uncertain information into the optimization processes and resolving multiple channels. Results show that the increased heat stress will lead to a potential reduction in labor productivity in China. By solving the objective function of the framework, total system costs to restore the reduction are estimated to be up to 248,700 million dollars under a Representative Concentration Pathway of 2.6 (RCP2.6) and 697,073 million dollars under RCP8.5 for standard employment, while less costs found for non-standard employment. However, non-standard employment tends to restore productivity reduction with the minimum system cost by implementing active measures rather than passive measures due to the low labor costs resulting from ambiguities among employment statuses. The situation could result in more heat-related work injuries because employers in non-standard employment can avoid the obligation of providing a safe working environment. Urgent actions are needed to uphold labor productivity with climate change, especially to ensure that employers from non-standard employment fulfill their statutory obligations.
Copyright © by EnPress Publisher. All rights reserved.