5G technology is transforming healthcare by enhancing precision, efficiency, and connectivity in diagnostics, treatments, and remote monitoring. Its integration with AI and IoT is set to revolutionize healthcare standards. This study aims to establish the state of the art in research on 5G technology and its impact on healthcare innovation. A systematic review of 79 papers from digital libraries such as IEEE Xplore, Scopus, Springer, ScienceDirect, and ResearchGate was conducted, covering publications from 2018 to 2024. Among the reviewed papers, China and India emerge as leaders in 5G health-related publications. Scopus, Springer Link, and IEEE Xplore house the majority of first-quartile (Q1) papers, whereas Science Direct and other sources show a higher proportion in the second quartile (Q2) and lower rankings. The predominance of Q1 papers in Scopus, Springer Link, and IEEE Xplore underscores these platforms’ influence and recognition, reflecting significant advancements in both practice and theory, and highlighting the expanding application of 5G technology in healthcare.
The business life cycle is examined through a comprehensive literature review in this academic study. Our initial approach involves searching for relevant articles on firm life cycle and strategy using the Web of Science and Scopus databases. We conduct bibliometric analyses to identify key contributors and recurring keywords. Subsequently, we select twenty-seven research papers to explore the Theory Development, Characteristics, Context, and Methodology (TCCM) framework for firm life cycle and strategy. Our analysis summarizes corresponding business strategies for each stage, including the use of Initial Management Control Systems (MCS) in the introduction phase. As companies grow, a high inventory-to-sales ratio may hinder effectiveness, but it proves beneficial in the growth and revival stages. Mature companies excel in green process innovation and engage more in Corporate Social Responsibility (CSR) activities. In the decline stage, firms use cost efficiencies, asset retrenchment, and core activity focus for recovery, signaling commitment to a successful turnaround. However, there is a research gap in exploring appropriate global strategies for various life cycle stages, providing an opportunity for additional articles to thoroughly investigate this relationship and assess multinational enterprises’ success trajectories throughout their life cycles.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
Copyright © by EnPress Publisher. All rights reserved.