Improving the competitiveness of tourism destinations is crucial for driving local economies and achieving income growth. In light of this evidence, numerous government departments strive to assess specific factors that impact the competitiveness of tourism destinations, enabling them to issue appropriate new tourism policies that promote more effective forms of tourism business. Therefore, the primary objective of this paper is to investigate how various elements such as tourism resources, tourism support, tourism management, location conditions, and tourism demand influence regional competitiveness in the Northern Bay region of Guangxi Province in China. To accomplish this goal, an online survey was conducted to collect data from 420 visitors who had experienced North Gulf Tourism; yielding an impressive response rate of 95 percent. The findings reveal that all aforementioned factors—namely: Tourism resources, tourism support, tourism management, location conditions and tourist demand—significantly impact destination competitiveness. Notably though, it was found that among these factors influencing destination competitiveness; it is primarily determined by effective local-level management (β = 0.345). Following closely behind are tourist demand (β = 0.133) as the second most influential factor affecting destination competitiveness; followed by location conditions (β = 0.116) ranking third; then comes tourist support (β = 0.03) as fourth in line impacting destination competitiveness; finally with least impact being exerted by available tourist resources (β = 0.016). Consequently, highlighting that regional competitiveness within Guangxi’s Northern Bay area predominantly hinges on efficient local-level management practices thus strongly recommending relevant authorities formulate novel work policies aimed at enhancing levels of local-level competitive advantage within the realm of regional touristic offerings.
The formation and implementation of migration policy cannot avoid being influenced by political elements, particularly political actors who have a direct or indirect interest in migration issues. Previous studies show that the influence on the administration and migration policy of a country has created the concept of ‘client politics’, that is, employers have a certain influence on the administration of foreign workers, especially in western countries. This situation has also created two groups which are pro-migrants consisting of employers, fundamental rights groups and trade unions; and anti-migrants are often associated with bureaucrats, nationalists and others. This study has used qualitative methods and has interviewed the informants consisting of government agencies, academics, employers, trade unions and NGOs. The results of the study show that those actors have a certain influence on the management of foreign workers including in the aspects of policy making and implementation. The concept of ‘client politics’ is seen to only apply to certain sectors, especially the manufacturing sector. Therefore, practically in Malaysia it is considered as ‘sectoral client politics’. In conclusion, the influence of both groups is not pursuing the interests of the country but rather on the interests of their respective sectors and entities.
Investors and company managements often rely on traditional performance evaluation indicators, such as return on equity, return on assets, and other financial ratios, to explain changes in a company’s market value added (MVA). However, the effectiveness of these traditional measures in explaining market value fluctuations remains uncertain. This research aims to investigate the impact of various profitability measures, namely return on equity, gross profit margin, operating profit margin, and return on assets, on explaining changes in the MVA of pharmaceutical and chemical companies listed on the Amman Stock Exchange. To achieve the study’s objectives, we analyzed the published financial statements of a sample consisting of 14 industrial companies out of a total of 53 companies listed on the Amman Stock Exchange during the period from 2008 to 2022. Relevant financial indicators were extracted from these statements to serve the purposes of the study. Correlation coefficients were employed to measure the extent to which the independent variables (profitability measures) could interpret changes in the dependent variable (MVA). One of the most significant findings of the study is that three dimensions of profitability measures have a statistically significant impact on explaining changes in the MVA of pharmaceutical and chemical companies listed on the Amman Stock Exchange, albeit to varying degrees. This suggests that traditional profitability measures still play a crucial role in influencing market perceptions of a company’s value, despite the potential limitations of these measures in capturing the full scope of a company’s performance and potential.
In Ghana, youth unemployment remains significant challenges, with technical and vocational education and training (TVET) emerging as a potential solution to equip young people with practical skills for the job market. However, the uptake of TVET programmes among Ghanaian youth remains low, particularly among females. This study therefore explores the determinants that influence TVET choices among Ghanaian youth, with the goal of informing policy development to enhance participation in vocational education. Applying an enhanced multinomial logistic regression (MLR) model, this research examines the influence of socio-economic, demographic, and attitudinal factors on career decisions. The enhanced model accounts for class imbalances in the dataset and improves classification accuracy, making it a robust tool for understanding the drivers behind TVET choices. A sample of 1600 Ghanaian youth engaged in vocational careers was used, ensuring diverse representation of the population. Key findings reveal that males are approximately three times more likely to choose TVET programs than females, despite females making up 50.13% of Ghana’s population. Specific determinants influencing TVET choices include financial constraints, parental influence, peer influence, teacher influence, self-motivation, and vocational limitations. In regions with limited vocational options, youth often pursue careers based on availability rather than preference, which highlights a gap in vocational opportunities. Parental and teacher influences were found to play a dominant role in steering youth towards specific careers. The study concludes with recommendations for policymakers, instructors, and stakeholders to increase the accessibility, relevance, and quality of TVET programmes to meet the socio-economic needs of Ghanaian youth.
Falling is one of the most critical outcomes of loss of consciousness during triage in emergency department (ED). It is an important sign requires an immediate medical intervention. This paper presents a computer vision-based fall detection model in ED. In this study, we hypothesis that the proposed vision-based triage fall detection model provides accuracy equal to traditional triage system (TTS) conducted by the nursing team. Thus, to build the proposed model, we use MoveNet, a pose estimation model that can identify joints related to falls, consisting of 17 key points. To test the hypothesis, we conducted two experiments: In the deep learning (DL) model we used the complete feature consisting of 17 keypoints which was passed to the triage fall detection model and was built using Artificial Neural Network (ANN). In the second model we use dimensionality reduction Feature-Reduction for Fall model (FRF), Random Forest (RF) feature selection analysis to filter the key points triage fall classifier. We tested the performance of the two models using a dataset consisting of many images for real-world scenarios classified into two classes: Fall and Not fall. We split the dataset into 80% for training and 20% for validation. The models in these experiments were trained to obtain the results and compare them with the reference model. To test the effectiveness of the model, a t-test was performed to evaluate the null hypothesis for both experiments. The results show FRF outperforms DL model, and FRF has same accuracy of TTS.
The Government of Indonesia has modernized the toll road transaction system by implementing the multi-lane free-flow (MLFF) project, set to operate commercially by the end of 2024. This project leverages Global Navigation Satellite System (GNSS) technology to identify vehicles using toll roads and establish a transaction mechanism that allows the MLFF Project Company to charge road users according to distance, vehicle category, and tariff levels. The project has result in a complex business arrangement between the Indonesia National Toll Road Authority (INTRA), Toll Road Companies (TRCs), and the MLFF Project Company. The aim of this paper is to review the regulatory and institutional framework of the MLFF project and analyze its challenges. The methodology employed is a qualitative framework for legal research, utilizing international literature reviews and current regulatory frameworks. The study assesses the proposed transaction architecture of the project and identifies commercial, political, and other risks associated with its implementation. Based on the analysis, the research identifies opportunities for regulatory improvements and better contracting arrangements. This research provides valuable insights into the regulatory landscape and offers policy recommendations for the Government to mitigate the identified risks. This contribution is significant to the academic field as it enhances understanding regulatory and institutional challenges in implementing advanced toll road systems.
Copyright © by EnPress Publisher. All rights reserved.