Medicinal herbs have been extensively utilized in the remediation of various health conditions. Dialium guineense fruit pulp, also well known as Velvet Tamarind is widely consumed in West Africa for its dietary and medicinal properties. The study aims to analyze the phytochemical constituents, vitamin content and the in vitro antioxidant effect of Dialium guineense fruit pulp (DGFP). The phytochemical constituents, vitamins (C, E, B1-12) composition, and in vitro antioxidant activity were examined utilizing standardized analytical methods. The qualitative and quantitative phytochemical screening of the fruit pulp of Dialium guineense was also carried out; the result indicated the presence of flavonoids, alkaloids, saponins, tannins, terpenoids, phenols, steroids, and cardiac glycosides in varying concentrations. The vitamin composition revealed that vitamin C was higher than other vitamins in the fruit pulp. The DPPH (2,2-diphenyl-1-picrylhydrazyl) and nitric oxide scavenging assay showed high radical scavenging activity while the FRAP (Ferric reducing antioxidant power) assay revealed significant reducing power. This indicates that Dialium guineense fruit pulp has potential health benefits.
This paper studies the product language construction of the twisted porcelain cultural heritage. Through field research, we collected and sorted out samples of twisted porcelain products, explored the product language characteristics of twisted porcelain from multiple aspects such as production process, product shape, and product color, interpreted cultural value, captured potential connotations, extracted representative words from user comments, quantified the relationship between users and twisted porcelain culture, realized the construction and transmission of traditional cultural language information, conveyed the traditional cultural information of the product to users, and promoted the sustainable dissemination and development of this cultural heritage. The research results show that after mining and extraction at the level of twisted porcelain characteristics, the core language constructs the cultural expression of twisted porcelain products, which is more in line with the needs of the market and users, and has the potential to be developed and disseminated using the language generation of cultural heritage products.
Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
The intermittent flow cold storage heat exchanger is one of the most important components of the pulse tube expansion refrigerator based on the reverse Brayton cycle. In the experimental system, the volume and heat transfer of the helical tube play a decisive role in the stable operation of the whole experimental system. However, there are few studies on heat transfer in a helical tube under helium working medium and intermittent flow conditions. In this paper, a process and method for calculating the volume of a helical tube are proposed based on the gas vessel dynamics model. Subsequently, a three-dimensional simulation model of the helical tube was established to analyze the heat transfer process of cryogenic helium within the tube. The simulations revealed that the temperature of helium in the tube decreases to the wall temperature and does not change when the helical angle exceeds 720°. Moreover, within the mass flow rate range of 1.6 g/s to 3.2 g/s, an increase in the mass flow rate was found to enhance the heat transfer performance of the helical tube. This study provides a reference for the selection and application of a helical tube under intermittent flow conditions and also contributes to the experimental research of inter-wall heat exchanger and pulse tube expansion refrigerators.
This study examines the spatial distribution of consumption competitiveness and carrying capacity across regions, exploring their interrelationship and implications for sustainable regional development. An evaluation index system is constructed for both consumption competitiveness and carrying capacity using a range of economic, social, and environmental indicators. We apply this framework to regional data in China and analyze the resultant spatial patterns. The findings reveal significant regional disparities: areas with strong consumption competitiveness are often concentrated in economically developed regions, while high carrying capacity is notable in less populated or resource-rich areas. Notably, a mismatch emerges in some regions—high consumer demand is not always supported by adequate carrying capacity, and vice versa. These disparities highlight potential sustainability challenges and opportunities. In the discussion, we address reasons behind the spatial mismatch and propose policy implications to better align consumer market growth with regional resource and environmental capacity. The paper concludes that integrating consumption-driven growth strategies with carrying capacity considerations is essential for balanced and sustainable regional development.
Companies are impacted by toxic leadership phenomena, resulting in many dissatisfied employees, low morale, and reduced progress. The fundamental mismatch between good leadership and harmful actions of toxic leaders is the primary cause of the problem. Toxic leadership can also be developed from narcissistic behavior of considering personal interests or using humiliation to maintain power. In this context, employees are negatively affected, resulting in higher stress levels, poorer job satisfaction, and a significant decrease in trust. Therefore, this research aims to explore the impact of toxic leadership and other factors on companies. The sample consists of 187 senior employees in the accounting department who worked in manufacturing companies. The results showed that toxic leadership influences role stress, while role stress affects emotional exhaustion and reactive work behavior. Moreover, future research should be conducted using other samples such as hospital employees or pay attention to other aspects related to role stress.
Copyright © by EnPress Publisher. All rights reserved.