The expansion of road networks, taken place during the last decades, was driven by technological progress and economic growth. The most innovative products of this trend—modern motorways and international road corridors—provide an excellent level of service, traffic safety and necessary information to travelers. However, despite this undeniable progress, major impediments and respective challenges to road authorities and operators still remain. The present paper analytically presents the main current challenges in the road engineering field, namely: a) financing new projects, b) alternative energy resources, especially renewable energy, c) serviceability, including maintenance of road infrastructure, traffic congestion and quality of the network, d) climate change hazards due to greenhouse gas emissions increase, e) environmental impacts, f) safety on roads, streets and motorways, and g) economy and cost-effectiveness. In each country and over each network, challenges and concerns may vary, but, in most cases, competent authorities, engaged in road development policies, have to deal with most of these issues. The optimization of the means to achieve the best results seems to be an enduring stake. In the present paper, the origin and the main features of these challenges are outlined as well as their tendency to get amplified or diminished under the actual evolving economic conditions worldwide, where growth alternates with crisis and social hardship. Moreover, responses, meant to provide solutions to the said challenges, are suggested, including research findings of Aristotle University and innovative technological achievements, to drive the transition to a more sustainable future.
The transportation sector is currently experiencing a significant transformation due to the influence of digital technologies, which are revolutionizing travel, goods transportation, and interactions with transportation systems. This study delves into the possibilities and obstacles presented by digital transformation in the realm of sustainable transportation. Moreover, it identifies the most effective methods for implementing digital transformation in this sector. Furthermore, our analysis sheds light on the potential impacts of digital transformation on sustainable development and environmental performance indicators within transportation systems. We discover that digital transformation can contribute to reduced greenhouse gas emissions, improved air quality, and increased resource efficiency, among other benefits. Nevertheless, we emphasize the potential risks and uncertainties associated with digital transformation, including concerns regarding data privacy, security, and ethics. Collectively, our research provides valuable insights into the opportunities and challenges presented by digital transformation in sustainable transportation. It also identifies best practices for successfully implementing digital transformation in this sector. The implications of our findings are significant for policymakers, businesses, and other stakeholders who aspire to drive the future of sustainable transportation through digital transformation.
The transportation sector in India, which is a vital engine for economic growth, is progressively facing challenges related to climate change. Increased temperature, extreme weather conditions, and rising seas threaten physical infrastructure, service delivery, and the economy. This research examines efforts towards improving the climate resilience of India’s transport sector through policy interventions. Strategies encompass broadening the focus to cover the integration of sustainability, innovative technology deployment, and adaptive infrastructure planning. Multi-sectoral measures are proposed to guarantee longevity, equity and environmental protection. National transport infrastructure will be secured, people will be enabled to move sustainably, and India will take its position in the world economy as a climate-resilient country. Long-term resource management and promoting inclusive governance are critical to agri-transportation systems that can withstand the changing climate.
Urbanization and suburbanization have led to high population growth in certain city regions, resulting in increased population density and mobility. Therefore, there is a need for a concept to address congestion, public transportation, information and communication systems, and non-motorized vehicles. Smart mobility is a concept of urban development as part of the smart city concept based on information and communication technology. Through this concept, it is expected that transportation services will be easily accessible, safe, comfortable, fast, and affordable for the community. This research aims to analyze smart mobility and its relationship with regional transportation planning and the development of South Tangerang, as well as to design a policy strategy model for the planning and development of South Tangerang with smart mobility. The research method used in this study is a mixed method, including analyzing the relationships and weighting of relationships between variables using the Cross Impact Multiplication applied to a classification (MICMAC) matrix. Multi-criteria decision analysis (MCDA) with Promethee software is also used to obtain the necessary policies. The results of this research indicate that the measurement of relationships between variables shows that smart mobility influences regional transportation planning, smart mobility affects regional development, and regional planning affects regional development. This research also provides alternative policies that policymakers should implement in a specific order. First, ensure the availability of public transportation; second, improve public transportation safety; third, enhance public transportation security; fourth, improve public transportation routes; fifth, provide real-time information access; sixth, improve transportation schedules; and seventh, increase the number of bicycle lanes.
This study evaluated the development and validation of an integrated operational model for the Underground Logistics System (ULS) in South Korea’s metropolitan area, aiming to address challenges in urban logistics and freight transportation by highlighting the potential of innovative logistics systems that utilize underground spaces. This study used conceptual modeling to define the core concepts of ULS and explored the system architecture, including cargo handling, transportation, operations and control systems, as well as the roles of cargo crews and train drivers. The ULS operational scenarios were verified through model simulation, incorporating both logical and temporal analyses. The simulation outcomes affirm the model’s logical coherence and precision, emphasizing ULS’s pivotal role in boosting logistics efficiency. Thus, ULS systems in Korea offer prospects for elevating national competitiveness and spurring urban growth, underscoring the merits of ULS in navigating contemporary urban challenges and championing sustainability.
The whole world is in a fuel crisis nearly approaching exhaustion, with climate change knocking at our doorsteps. In the fight against global warming, one of the principle components that demands technocratic attention is Transportation, not just as a significant contributor to atmospheric emissions but from a much broader perspective of environmental sustainability.
From the traditional technocratic aspect of transport planning, our epiphany comes in the form of Land Use integrated sustainable transport policy in which Singapore has been a pioneer, and has led the way for both developed and developing nations in terms of mobility management. We intend to investigate Singapore’s Transport policy timeline delving into the past, present and future, with a case by case analysis for varying dimensions in the present scenario through selective benchmarking against contemporary cities like Hong Kong, London and New York. The discussions will include themes of modal split, land use policy, vehicular ownership, emission policy, parking policy, safety and road traffic management to name a few. A visualization of Singapore’s future in transportation particularly from the perspective of automated vehicles in conjunction with last mile solutions is also detailed.
Copyright © by EnPress Publisher. All rights reserved.