Gout is an arthritis characterized by the deposition of sodium monoacid crystals in the synovial membrane, articular cartilage, and periarticular tissues that leads to an inflamatory process. In most cases, the diagnosis is established by clinical criteria and analysis of the synovial fluid for MSU crystals. However, gout may manifest in atypical ways and make diagnosis difficult. In these situations, imaging studies play a fundamental role in helping to confirm the diagnosis or even exclude other differential diagnoses. Conventional radiography is still the most commonly used method in the follow-up of these patients, but it is a very insensitive test, because it only detects late changes. In recent years, advances in imaging methods have emerged in relation to gout. Ultrasound has proven to be a highly accurate test in the diagnosis of gout, identifying MSU deposits in articular cartilage and periarticular tissues, and detecting and characterizing tophi, tendinopathies, and tophi enthesopathies. Computed tomography is an excellent exam for the detection of bone erosions and evaluation of spinal involvement. Dual-energy computed tomography, a new method that provides information on the chemical composition of tissues, allows identification of MSU deposits with high accuracy. MRI can be useful in the evaluation of deep tissues not accessible by ultrasound. In addition to diagnosis, with the emergence of drugs that aim to reduce the tophaceous burden, imaging examinations become a useful tool in the follow-up treatment of gout patients.
Based on the characteristics of liquid lens sparse aperture imaging, a radiative multiplet array structure is proposed; a simplified model of sparse aperture imaging is given, and the analytical expression of the modulation transfer function is derived from the optical pupil function of the multiplet array structure; the specific distribution form of this multiplet array structure is given, and the structure parameters are approximated by the dimensionless method; the two types of radiative multiplet array structures are discussed, and the filling factor, redundancy, modulation transfer function and other characteristic parameters are calculated. The physical phenomena exhibited by the parametric scan are discussed, and the structural features and imaging characteristics of these two arrays are compared. The results show that the type-II structure with larger actual equivalent aperture and actual cutoff frequency and lower redundancy is selected when the average modulation transfer function and the IF characteristics of the modulation transfer function of the two structures are close to each other; the type-II structure has certain advantages in imaging; the conclusion is suitable for arbitrary enclosing circle size because the liquid lens-based multiplet array structure adopts dimensionless approximation parameters; compared with the composite toroidal structure, the radiative multiplet mirror structure has a larger actual cut-off frequency and actual equivalent aperture when the filling factor is the same.
Amyloidosis is a systemic disorder produced by the deposition of insoluble protein fibrils that fold and deposit in the myocardium. Patients with amyloidosis and cardiac involvement have higher mortality than patients without cardiac involvement. The two most prevalent forms of amyloidosis associated with cardiac involvement are AL amyloidosis, due to the deposition of immunoglobulin light chains, and ATTR amyloidosis, due to the deposition of the transthyretin (TTR) protein in mutated or senile form. This article aims to review the different cardiac imaging modalities (echocardiography, cardiac magnetic resonance imaging, nuclear medicine and tomography) that allow to determine the severity of cardiac involvement in patients with amyloidosis, the type of amyloidosis and its prognosis. Finally, we suggest a diagnostic algorithm to determine cardiac involvement in amyloidosis adapted to locally available diagnostic tools, with a practical and clinical approach.
The application of nanotechnology in the food industry enables prioritization of consumers’ needs. Nanotechnology has the ability to provide new forms of control on food structure; therefore, this technology has higher industrial value. This paper briefly introduces the main concepts of nanotechnology and its correlation with size reduction performance. This paper also introduces the main nanobjects and their potential applications in food, and summarizes various studies and their applications in food industry.
Using a Global Trade Analysis Project (GTAP) model, and China as the base for analytical comparison, this paper shows that there are significant economic benefits to China and the participating countries along all six Belt and Road Initiative (BRI) economic corridors. However, to maximize these benefits, the social and environmental risks need to be well managed. The analysis shows a clear sequencing in terms of priority corridors. Two corridors have minimal investments and immediate returns, two corridors have significant investments with huge returns, and two corridors have high investments with lower returns. Overall, the paper demonstrates that to ensure the sustainability of any BRI corridor development, there is a need to consider its costs and benefits from the economic, social and environmental perspectives.
In this paper, we examine a possible application of ordered weighted average (OWA for short) aggregation operators in the insurance industry. Aggregation operators are essential tools in decision-making when a single value is needed instead of a couple of features. Information aggregation necessarily leads to information loss, at least to a specific extent. Whether we concentrate on extreme values or middle terms, there can be cases when the most important piece of the puzzle is missing. Although the simple or weighted mean considers all the values there is a drawback: the values get the same weight regardless of their magnitude. One possible solution to this issue is the application of the so-called Ordered Weighted Averaging (OWA) operators. This is a broad class of aggregation methods, including the previously mentioned average as a special case. Moreover, using a proper parameter (the so-called orness) one can express the risk awareness of the decision-maker. Using real-life statistical data, we provide a simple model of the decision-making process of insurance companies. The model offers a decision-supporting tool for companies.
Copyright © by EnPress Publisher. All rights reserved.