Alfalfa is considered the most used forage crop in the world, its main use is for cattle feeding, due to its high nutritional value, specifically in protein and digestible fiber. Currently, the trend in agriculture is to reduce the application of chemicals and among them are fertilizers that pollute soil and water, so the adoption of new technologies and other not so new is becoming a good habit among farmers. Nanotechnology in the plant system allows the development of new fertilizers to improve agricultural productivity and the release of mineral nutrients in nanoforms, which has a wide variety of benefits, including the timing and direct release of nutrients, as well as synchronizing or specifying the environmental response. Biofertilizers are important components of integrated nutrient management and play a key role in soil productivity and sustainability. While protecting the environment, they are a cost-effective, environmentally friendly and renewable source of plant nutrients to supplement chemical fertilizers in the sustainable agricultural system. Nanotechnology and biofertilization allow in a practical way the reduction in the application of chemicals, contributing to the sustainability of agriculture, so this work aims to review the relevant results on biofertilization, the use of nanotechnology and the evaluation of the nutritional composition of alfalfa when grown with the application of biofertilizers.
The economy, unemployment, and job creation of South Africa heavily depend on the growth of the agricultural sector. With a growing population of 60 million, there are approximately 4 million small-scale farmers (SSF) number, and about 36,000 commercial farmers which serve South Africa. The agricultural sector in South Africa faces challenges such as climate change, lack of access to infrastructure and training, high labour costs, limited access to modern technology, and resource constraints. Precision agriculture (PA) using AI can address many of these issues for small-scale farmers by improving access to technology, reducing production costs, enhancing skills and training, improving data management, and providing better irrigation infrastructure and transport access. However, there is a dearth of research on the application of precision agriculture using artificial intelligence (AI) by small scale farmers (SSF) in South Africa and Africa at large. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Bibliometric analysis guidelines were used to investigate the adoption of precision agriculture and its socio-economic implications for small-scale farmers in South Africa or the systematic literature review (SLR) compared various challenges and the use of PA and AI for small-scale farmers. The incorporation of AI-driven PA offers a significant increase in productivity and efficiency. Through a detailed systematic review of existing literature from inception to date, this study examines 182 articles synthesized from two major databases (Scopus and Web of Science). The systematic review was conducted using the machine learning tool R Studio. The study analyzed the literature review articled identified, challenges, and potential societal impact of AI-driven precision agriculture.
This study systemically examines the numerous impacts of climate change on agriculture in Tunisia. In this study, we establish an empirical and comprehensive methodology to assess the effects of climate changes on Tunisian agriculture by investigating current climatic patterns using crop yields and socioeconomic variables. The study also assesses the types of adaptation strategies agriculture uses in Tunisia and explores their effectiveness in coping with climate-related adversities. We also consider some resilience factors, namely the ecological aspect and economic and social camouflage pursued by the (very) men in Tunisian agriculture. We also extensively discuss the complex interconnected relationship between policy interventions and community-based adaptations, a crucial part of the ongoing debate on climate change adaptation and resilience in agriculture. The findings of this study contribute to this important conversation, particularly for areas facing similar challenges.
Considering increasing concerns about climate change and its implications for global agricultural competitiveness and food security, a small text has assessed the sensitivity of agriculture competitiveness employing a composite scale to the climate change impacts. The world’s food production and supply chains have been jeopardized strain as the world struggles to cope with the far-reaching consequences of climate change, which are worsened by a series of natural disasters, the Ukraine-Russia war, and the continuous fight against infectious diseases like COVID-19. Natural disasters and armed conflicts are overstretching people’s capabilities to acquire nutritive foods at economical/reasonable prices, risking local and global food security and agricultural market competitiveness. The study develops a framework for global agricultural competitiveness assessment by conducting a Delphi Expert survey. The framework has served as a global benchmark for assessing and comparing the national and international agriculture landscape. Its implementation will significantly contribute to the development of policies that promote inclusive and sustainable agricultural practices. Through this action, it guarantees to substantially enhance worldwide food security, thereby effectively tackling the urgent issues that impact communities across the globe.
Copyright © by EnPress Publisher. All rights reserved.