With the advancement of modernization, commoditization and grassroots governance have become important terms. Community governance not only promotes modern democracy but plays a key role in improving community governance capabilities and modernizing the governance system, which is receiving much attention. Despite the expanding number of articles on community governance, few evaluations investigate its evolution, tactics, and future goals. As a result, the particular goal of this study is to provide the findings of a thematic analysis of community governance research. Investigating the skills and procedures needed for practice-based community government. Data for this study were gathered through a thematic assessment of 66 papers published between 2018 and 2023. The pattern required by the researchers was provided by the ATLS.ti23 code used to record the review outcomes. This study proposes six central themes: 1) rural advancement, 2) community (social) capital, 3) public health and order governance, 4) governance technology, 5) sustainable development, and 6) governance model. The research results show that the research trend of community governance should focus on rural advancement, taking rural community governance as the starting point, the dilemma and adjustment of the governance model, community public health and order governance, and digital governance. It will yield new insights into new community governance standards and research trends.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
Water splitting, the process of converting water into hydrogen and oxygen gases, has garnered significant attention as a promising avenue for sustainable energy production. One area of focus has been the development of efficient and cost-effective catalysts for water splitting. Researchers have explored catalysts based on abundant and inexpensive materials such as nickel, iron, and cobalt, which have demonstrated improved performance and stability. These catalysts show promise for large-scale implementation and offer potential for reducing the reliance on expensive and scarce materials. Another avenue of research involves photoelectrochemical (PEC) cells, which utilize solar energy to drive the water-splitting reaction. Scientists have been working on designing novel materials, including metal oxides and semiconductors, to enhance light absorption and charge separation properties. These advancements in PEC technology aim to maximize the conversion of sunlight into chemical energy. Inspired by natural photosynthesis, artificial photosynthesis approaches have also gained traction. By integrating light-absorbing materials, catalysts, and membranes, these systems aim to mimic the complex processes of natural photosynthesis and produce hydrogen fuel from water. The development of efficient and stable artificial photosynthesis systems holds promise for sustainable and clean energy production. Tandem cells, which combine multiple light-absorbing materials with different bandgaps, have emerged as a strategy to enhance the efficiency of water-splitting systems. By capturing a broader range of the solar spectrum, tandem cells optimize light absorption and improve overall system performance. Lastly, advancements in electrocatalysis have played a critical role in water splitting. Researchers have focused on developing advanced electrocatalysts with high activity, selectivity, and stability for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). These electrocatalysts contribute to overall water-splitting efficiency and pave the way for practical implementation.
Unmanned Aerial Vehicles (UAVs) have gained spotlighted attention in the recent past and has experienced exponential advancements. This research focuses on UAV-based data acquisition and processing to generate highly accurate outputs pertaining to orthomosaic imagery, elevation, surface and terrain models. The study addresses the challenges inherent in the generation and analysis of orthomosaic images, particularly the critical need for correction and enhancement to ensure precise application in fields like detailed mapping and continuous monitoring. To achieve superior image quality and precision, the study applies advanced image processing techniques encompassing Fuzzy Logic and edge-detection techniques. The study emphasizes on the necessity of an approach for countering the loss of information while mapping the UAV deliverables. By offering insights into both the challenges and solutions related to orthomosaic image processing, this research lays the groundwork for future applications that promise to further increase the efficiency and effectiveness of UAV-based methods in geomatics, as well as in broader fields such as engineering and environmental management.
This article emphasizes the critical role of the subsidiarity principle in facilitating adaptation to climate change. Employing a comparative legal analysis approach, the paper examines how this principle, traditionally pivotal in distributing powers within the European Union, could be adapted globally to manage climate change displacement. Specifically, it explores whether subsidiarity can surmount the challenges posed by national sovereignty and states’ reluctance to cede control over domestic matters. Findings indicate that while domestic efforts and local adaptations should be prioritized, international intervention becomes imperative when national capacities are overwhelmed. This article proposes that ‘causing countries’ and the global community bear a collective responsibility to act. The Asia-Pacific region, characterized by diverse and vulnerable ecosystems like small islands, coastal areas, and mountainous regions, serves as the focal point for this study. The research underscores the necessity of developing policies and further research to robustly implement the subsidiarity principle in protecting climate-displaced populations.
Copyright © by EnPress Publisher. All rights reserved.