Graphene has been ranked among one of the most remarkable nanostructures in the carbon world. Graphene modification and nanocomposite formation have been used to expand the practical potential of graphene nanostructure. The overview is an effort to highlight the indispensable synthesis strategies towards the formation of graphene nanocomposites. Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, or others) to attain the desired end material. Common fabrication approaches like the in-situ method, solution processing, and melt extrusion have been widely involved to form the graphene nanocomposites. Moreover, advanced, sophisticated methods such as three- or four-dimensional printing, electrospinning, and others have been used to synthesize the graphene nanocomposites. The focus of all synthesis strategies has remained on the standardized graphene dispersion, physical properties, and applications. However, continuous future efforts are required to resolve the challenges in synthesis strategies and optimization of the parameters behind each technique. As the graphene nanocomposite design and properties directly depend upon the fabrication techniques used, there is an obvious need for the development of advanced methods having better control over process parameters. Here, the main challenging factors may involve the precise parameter control of the advanced techniques used for graphene nanocomposite manufacturing. Hence, there is not only a need for current and future research to resolve the field challenges related to material fabrication, but also reporting compiled review articles can be useful for interested field researchers towards challenge solving and future developments in graphene manufacturing.
In order to replace conventional materials in the existing composite world, there has been a focus on adopting coir fibres, which are lightweight, adaptable, efficient, and have great mechanical qualities. This study describes the creation of environmentally responsible bio-composites with good mechanical characteristics that employ coir powder as a reinforcement, which has good interfacial integrity with an epoxy matrix. And these epoxy-coir composites supplemented with coir particles are predicted to function as a reliable substitute for traditional materials used in industrial applications. Here, untreated and alkali-treated coir fibres powder were employed as reinforcement, with epoxy resin serving as a matrix. An experimental investigation has been carried out to study the effect of coir powder reinforcement at different weight percentages (5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%). The morphological study, followed by a scanning electron microscope (SEM) and an optical microscope (OM), demonstrated that the powder and matrix had the strongest adhesion at 20 wt% coir powder-reinforced composite, with no voids, bubbles, or cracks. Based on the entire investigation, the polymer composite with 20 wt% reinforcement exhibited better mechanical qualities than the other combinations.
Lead sulfide (PbS) is an important IV-VI semiconductor material with narrow bandwidth and wide wave width, which attracts people's attention. Nano-level PbS has many novel optoelectronic properties and has a wide range of applications in the field of optoelectronics, such as infrared optoelectronic devices, photovoltaic devices, light-emitting devices and display devices. In this paper, Pbs is produced by solvent thermal method by using lead acetate as lead source, sulfur power as sulfur source, ethylene glycol as solvent, and acetic acid to provide acidic environment. The reaction acidity, type of lead source, amount of sulfur source and other aspects will be explored. The products obtained under different conditions were characterized by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM). The results showed that PbS produced at 140°C for 24 hours, using 14mL ethylene glycol and 1.2mL acetic acid has the best morphology. It has a non-planar six-arm symmetrical structure. Finally, we prepare the lead sulfide composite Ni/PbS, and characterized it.
Three-dimensionally cross-linked polymer nanocomposite networks coated nano sand light-weight proppants (LWPs) were successfully prepared via ball-milling the macro sand and subsequently modifying the resultant nano sand with sequential polymer nanocomposite coating. The modified nano sand proppants had good sphericity and roundness. Thermal analyses showed that the samples can withstand up to 411 ℃. Moreover, the proppant samples’ specific gravity (S.G.) was 1.02–1.10 g/cm3 with excellent water dispersibility. Therefore, cross-linked polymer nanocomposite networks coated nano sand particles can act as potential candidates as water-carrying proppants for hydraulic fracturing operations.
The development of flexible, wearable electronic devices is one of the future directions of technology development. Flexible conductive materials are important supporting materials for wearable electronic devices. Polymer has excellent flexibility; it is an important way to prepare flexible conductors from polymer-based conductive composites. In this paper, the research progress of polymer-based flexible conductive composites is summarized in terms of preparation and characterization methods. The key factors to realize flexible conductors are put forward, namely, the maintenance of excellent polymer elasticity and the realization of stability. The design and preparation of the extensible conductor with high-elasticity matrix and nanofiller are introduced in detail, and the problems in the current research are summarized.
Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
Copyright © by EnPress Publisher. All rights reserved.