Accurate prediction of US Treasury bond yields is crucial for investment strategies and economic policymaking. This paper explores the application of advanced machine learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, in forecasting these yields. By integrating key economic indicators and policy changes, our approach seeks to enhance the precision of yield predictions. Our study demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal dependencies and complexities inherent in financial data. The inclusion of macroeconomic and policy variables significantly improves the models’ predictive accuracy. This research underscores a pioneering movement for the legacy banking industry to adopt artificial intelligence (AI) in financial market prediction. In addition to considering the conventional economic indicator that drives the fluctuation of the bond market, this paper also optimizes the LSTM to handle situations when rate hike expectations have already been priced-in by market sentiment.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
This paper focuses on examining the relationship among organizational factor, work-related factor, psychological factor, personal factor and the commitment of oil palm smallholders toward Malaysian Sustainable Palm Oil (MSPO) certification. The study employed a descriptive research methodology and a structured survey instrument to gather data from oil palm smallholders (n = 441) through simple random sampling technique. Data analysis was conducted using SPSS and partial least square structural equation modeling (PLS-SEM) to test the proposed relationship. The findings reveal that organizational factors significantly impact the affective (β = 0.345, p < 0.05), normative (β = 0.424, p < 0.05), and continuance commitment (β = 0.339, p < 0.05) of oil palm smallholders. Additionally, work-related factors show a substantial effect on these same dimensions of commitment; affective (β = 0.277, p < 0.05), normative (β = 0.263, p < 0.05), and continuance (β = 0.413, p < 0.05). Psychological factors significantly impact the affective (β = 0.216, p < 0.05) and normative commitment (β = 0.146, p < 0.05), with no statistically significant influence on continuance commitment. Conversely, personal factors exhibit limited influence, affecting only continuance commitment (β = 0.104, p < 0.05) to a minor degree, with no statistically significant impact on affective and normative commitment. The present research is among the few empirical findings that have examined the oil palm smallholders’ commitment towards MSPO certification. By emphasizing the role of organizational and work-related factors, the study offers valuable insights for stakeholders within the oil palm sector, highlighting areas to enhance smallholder commitment toward sustainability standards. Consequently, this study contributes a unique perspective to the existing body of literature on sustainable practices in the oil palm industry.
Purpose—In the business sector, reliable and timely data are crucial for business management to formulate a company’s strategy and enhance supply chain efficiency. The main goal of this study is to examine how strong brand strength affects shareholder value with a new Supplier Relationship Management System (SRMS) and to find the specific system qualities that are linked to SRMS adoption. This leads to higher brand strength and stronger shareholder value. Design/Methodology/Approach—This study employed a cross-sectional design with an explanatory survey as a deductive technique to form hypotheses. The primary method of data collection used a drop-off questionnaire that was self-administered to the UAE-based healthcare suppliers. Of the 787 questionnaires sent to the healthcare suppliers, 602 were usable, yielding a response rate of 76.5%. To analyze the data gathered, the study used Partial Least Squares Structural Equation modelling (PLS-SEM) and artificial neural network (ANN) techniques. Findings—The study’s data proved that SRMS adoption and brand strength positively affected and improved healthcare suppliers’ shareholder value. Additionally, it demonstrates that user satisfaction is the most significant predictor of SRMS adoption, while the results show that the mediating role of brand strength is the most significant predictor of shareholder value. The results demonstrated that internally derived constructs were better explained by the ANN technique than by the PLS-SEM approach. Originality/Value—This study demonstrates its practical value by offering decision-makers in the healthcare supplier industry a reference on what to avoid and what elements to take into account when creating plans and implementing strategies and policies.
Copyright © by EnPress Publisher. All rights reserved.