This paper examines the influence of green accounting and environmental performance on stock prices, focusing on Indonesia’s mining sector. It aims to understand whether these factors, along with profitability, impact the growth of stock prices. The study is grounded in stakeholder, legitimacy, and signal theories, emphasizing the role of stakeholder support and environmental responsibility in company survival. The research explores the conflicting results of previous studies on the impact of green accounting on stock prices. It uses various indicators, such as environmental costs for green accounting and the PROPER rating system, to measure environmental performance. The study also considers profitability as a moderating variable. The population in this research is all mining companies listed on the Indonesia Stock Exchange in 2017–2021. The sample was selected based on purposive sampling with several criteria. Multiple regression analysis and hypothesis testing were used to analyze the data. Key findings suggest that green accounting positively influences stock prices, while environmental performance has a negative effect. Profitability positively affects stock prices but does not significantly moderate the impact of green accounting on stock prices. However, it does enhance the relationship between environmental performance and stock prices. The study concludes that companies should increase disclosures related to green accounting and environmental performance, which are crucial for long-term investment considerations.
The Consumer Price Index (CPI) is a vital gauge of economic performance, reflecting fluctuations in the costs of goods, services, and other commodities essential to consumers. It is a cornerstone measure used to evaluate inflationary trends within an economy. In Saudi Arabia, forecasting the Consumer Price Index (CPI) relies on analyzing CPI data from 2013 to 2020, structured as an annual time series. Through rigorous analysis, the SARMA (0,1,0) (12,0,12) model emerges as the most suitable approach for estimating this dataset. Notably, this model stands out for its ability to accurately capture seasonal variations and autocorrelation patterns inherent in the CPI data. An advantageous feature of the chosen SARMA model is its self-sufficiency, eliminating the need for supplementary models to address outliers or disruptions in the data. Moreover, the residuals produced by the model adhere closely to the fundamental assumptions of least squares principles, underscoring the precision of the estimation process. The fitted SARMA model demonstrates stability, exhibiting minimal deviations from expected trends. This stability enhances its utility in estimating the average prices of goods and services, thus providing valuable insights for policymakers and stakeholders. Utilizing the SARMA (0,1,0) (12,0,12) model enables the projection of future values of the Consumer Price Index (CPI) in Saudi Arabia for the period from June 2020 to June 2021. The model forecasts a consistent upward trajectory in monthly CPI values, reflecting ongoing economic inflationary pressures. In summary, the findings underscore the efficacy of the SARMA model in predicting CPI trends in Saudi Arabia. This model is a valuable tool for policymakers, enabling informed decision-making in response to evolving economic dynamics and facilitating effective policies to address inflationary challenges.
The purpose of this paper is to explore the performance of ridge regression and the random forest model improved by genetic algorithm in predicting the Boston house price data set and conduct a comparative analysis. To achieve it, the data is divided into training set and test set according to the ratio of 70-30. The RidgeCV library is used to select the best regularization parameter for the Ridge regression model, and for the random forest model, the genetic algorithm is used to optimize the model's hyperparameters. The result shows that compared with ridge regression, the random forest model improved by genetic algorithm can perform better in the regression problem of Boston house prices.
Nowadays, more and more cars have begun to enter into innumerable families; the family car has become a necessity for Chinese households who have certain purchasing power. However, the ups and downs of oil prices have brought some impact on people's automobile consumption activities. Therefore, after collecting the information of the oil price and family car consumer, carried on through in-depth analysis of the relevant data with reasonable relationship, and then developed a suitable for China's national conditions and finished oil pricing model, thereby the National Development and Reform Commission have proposed the suggestion for China's refined oil pricing mechanisms and promoting the healthy development of new energy vehicles with specific measures. For question 1, through the problem analysis and information access, combined with the past and current situation of the domestic refined oil prices, we analyze the following seven factors: international crude oil prices, China's annual crude oil imports, China's annual crude oil exports, crude oil output in China, China's annual GDP per capita, China's annual consumption of crude oil, the total annual energy consumption in China, all have influence on China's refined oil prices. By monadic linear regression analysis, annual average prices of domestic refined oil products have a certain correlation with the various influencing factors, and then by multiple linear regression way eventually concluded the final relationship between oil prices and the influence factors, which compared with the current price, and make reasonable evaluation model. Through the establishment of various influencing factors and function of time, and using the evaluation model for refined oil product price to make reasonable forecast. According to this model, in order to predict refined oil product price as $122.15 per barrel in 2016. For question two, we basically sums up three key factor which influence the quantity of family vehicle: China's oil product prices, the annual GDP per capita, total road mileage. Through Excel to make the relationship curves of different quantity of family cars against influencing factors, and use Grey Forecasting method to forecast the quantity of family cars. And carries on the residual error test, it is used to conclude that the rationality of the model is highly. The number of private cars of the city of xi 'an is predicts that to 8.302 million vehicles by 2020. For question three, we discussed the relationship between international crude oil prices and domestic exports of crude oil export with domestic refined oil prices, through its multiple linear regressions to get the final pricing model. For question four, according to three previous established models, we proposed China's refined oil pricing mechanism proposal to the national development and Reform Commission: perfect price controls, deeper product market, and integration of resources consideration and environmental protection class tax types, adjust the consumption tax collection and Administration links, and improve the production cost accounting.
This paper mainly uses the idea of pedigree clustering analysis, gray prediction and principal component analysis. The clustering analysis model, GM (1,1) model and principal component analysis model were established by using SPSS software to analyze the correlation matrices and principal component analysis. MATLAB software was used to calculate the correlation matrices. In January, The difference in price changes of major food prices in cities is calculated, and had forecasted the various food prices in June 2016. For the first issue, the main food is classified and the data are processed. After that, the SPSS software is used to classify the 27 kinds of food into four categories by using the pedigree cluster analysis model and the system clustering. The four categories are made by EXCEL. The price of food changes over time with a line chart that analyzes the characteristics of food price volatility. For the second issue, the gray prediction model is established based on the food classification of each kind of food price. First, the original data is cumulated, test and processed, so that the data have a strong regularity, and then establish a gray differential equation, and then use MATLAB software to solve the model. And then the residual test and post-check test, have C <0.35, the prediction accuracy is better. Finally, predict the price trend in June 2016 through the function. For the third issue, we analyzed the main components of 27 kinds of food types by celery, octopus, chicken (white striped chicken), duck and Chinese cabbage by using the data of principal given and analyzed by principal component analysis. It can be detected by measuring a small amount of food, this predict CPI value relatively accurate. Through the study of the characteristics of the region, select Shanghai and Shenyang, by looking for the relevant CPI and food price data, using spss software, principal component analysis, the impact of the CPI on several types of food, and then calculated by matlab algorithm weight, and then the data obtained by the analysis and comparison, different regions should be selected for different types of food for testing.
Copyright © by EnPress Publisher. All rights reserved.