A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.
Root turnover is a key process of terrestrial ecosystem carbon cycle, which is of great significance to the study of soil carbon pool changes and global climate change. However, because there are many measurement and calculation methods of root turnover, the results obtained by different methods are quite different, and the current research on root turnover of forest ecosystem on the global regional scale is not sufficient, so the change law of root turnover of global forest ecosystem is still unclear. By collecting literature data and unifying the calculation method of turnover rate, this study integrates the spatial pattern of fine root turnover of five forest types in the world, and obtains the factors affecting fine root turnover of forest ecosystem in combination with soil physical and chemical properties and climate data. The results showed that there were significant differences in fine root turnover rate among different forest types, and it gradually decreased with the increase of latitude; the turnover rate of fine roots in forest ecosystem is positively correlated with annual average temperature and annual average precipitation; fine root turnover rate of forest ecosystem is positively correlated with soil organic carbon content, but negatively correlated with soil pH value. This study provides a scientific basis for revealing the law and mechanism of fine root turnover in forest ecosystem.
The agronomic use of mushroom post-harvest substrates (SPCHs) in horticultural seedbeds could be an interesting alternative for the reuse of these wastes in line with the European circular economy strategy. This work evaluates the potential use of four treatments with different SPCHs, mushroom (-Ch), mushroom (-St), mushroom compost (-CO), and a mixture (SPCH-Ch and SPCH-St) as substrates for lettuce and chili pepper seed germination. The trial was carried out in a germination chamber using commercial compost as a control treatment. The evaluation was based on its chemical (salinity, N and C content), physical (bulk and real density, porosity and water retention) and plant effect (germination and biomass) characteristics. Of the chemical properties studied, the high salinity in SPCH-Ch and SPCH-CO was a limiting factor for the development of the horticultural species evaluated (electrical conductivity 1:2.5; p/v; ~11 dS m-1), and low germination percentages were observed. Regarding physical properties, porosity and water retention, the SPCH-CO, SPCH-St and mixture treatments presented some values outside the optimal range established for germination substrates. In the case of SPCH-St, its high C/N ratio could be a limitation for supplying N to the crop. In relation to biomass production (aerial and root) of lettuce and chili pepper, all the treatments evaluated obtained similar values to the control treatment. The mixed treatment presented the highest biomass values, significantly higher in the lettuce crop. In general, the mixed treatment proved to be the best alternative for use in the seedbed.
The provided material presents a priority article on the scientific discovery titled “The phenomenon of simultaneous destruction of water-oil and oil-water emulsions”. The authors propose the corresponding formula: the previously unknown phenomenon of simultaneous destruction of water-oil and oil-water emulsions occurs when polynanostructured surfactant demulsifiers with characteristics akin to crystalline liquids, intramolecular interblock activity, and enduring intramolecular nanomotors (such as block copolymers of ethylene and propylene oxides, which act as sources of oligomer homologues of oxyethylene ethers) are added to crude oil during primary oil processing. This phenomenon is attributed to the redistribution of oligomer homologues, with the most hydrophobic oxyethylene ethers being dispersed in water-oil emulsions and the most hydrophilic ones in oil-water emulsions, resulting in robust nanodispersed phases with crystalline liquid properties.
Antioxidants are derivatives of vitamin C or beta-carotene that prevent reactions stimulated by oxygen, peroxides, or free radicals, thus reducing the oxidative stress. They have found their way into many uses in treating several human diseases and reducing the risk of developing diseases like cancer. In view of this property, the present study was focussed in identifying several plants possessing antioxidative properties and which were also conserved in the ex-situ park of CSIR – Central Institute of Mining and Fuel Research, Dhanbad, India. Fifteen medicinal plants including herbs, shrubs and grasses are reported in this paper, and a collective insight has been presented about their antioxidant properties and the present state of their pharmacological applications. The specific chemical constituents abundant in the leaves, roots, stems, seeds and fruits of each of these plants have also been dealt with. To report a few antioxidant pharmacological preparations from Ayurvedic literature are Vimang, Maharishi Amrit Kalash (MAK4, MAK5), Maharishi Ayurved (MA631, MA47), MA Raja’s Cup, MA Student Rasayana and MA Ladies Rasayana. This review has been attempted to enhance the importance of the plants which are generally being neglected, so that it can used by the local people in rural areas for their cultivation and it will also pave the pathway for their subsequent future use in medicinal and research industry for drug formulation.
The Cu2–xSe nanoparticles were synthesized by high temperature pyrolysis, modified with aminated polyethylene glycol in aqueous solution and loaded with compound 2,2′–azobis[2–(2–imidazolin–2–yl)propane] dihydrochloride (AIPH). The obtained nanomaterials can induce photothermal effect and use heat to promote the generation of toxic AIPH radicals under the irradiation of near-infrared laser (808 nm), which can effectively kill cancer cells. A series of in vitro experiments can preliminarily prove that Cu2–xSe–AIPH nanomaterials have strong photothermal conversion ability, good biocompatibility and anticancer properties.
Copyright © by EnPress Publisher. All rights reserved.