Cucumber (Cucumis sativus L.) is a tropical vegetable and a source of vitamins such as K, C, and B. It is commonly grown and sold for daily consumption, but picking the right fruit size is more profitable. Therefore, a method for estimating the fruit weight is highly recommended. This paper aimed to determine the dimensions of cucumber fruit based on its usual harvesting size and to establish a model to show the relationship between fruit weight, fruit length, and fruit diameter. Cucumber was planted in the experimental field belonging to the Faculty of Agricultural Biosystems Engineering, Royal University of Agriculture, Phnom Penh, Cambodia, from January to June 2022. In the study, 48 market-size fruits were randomly selected from the plots to measure their weight, length, and diameter. The result shows that fruit length and fruit diameter had a positive relationship (P < 0.001; R = 0.70). Fruit weight was 3.38 fruit length × fruit diameter (P <0.001; R = 0.95). Nevertheless, L/D ratio negatively affected fruit weight, when it exceeded 3:1. Fruit weight was greater than 100 g when fruit diameter was over 4 cm and fruit length was over 10 cm. Therefore, when picking cucumber fruits, one must consider fruit length and diameter to be profitable. Further studies will focus on measuring cucumber fruit already available on the market to understand more about actual consumer preferences.
Based on the population change data of 2005–2009, 2010–2014, 2015–2019 and 2005–2019, the shrinking cities in Northeast China are determined to analyze their spatial distribution pattern. And the influencing factors and effects of shrinking cities in Northeast China are explored by using multiple linear regression method and random forest regression method. The results show that: 1) In space, the shrinking cities in Northeast China are mainly distributed in the “land edge” areas represented by Changbai Mountain, Sanjiang Plain, Xiaoxing’an Mountain and Daxing’an Mountain. In terms of time, the contraction center shows an obvious trend of moving northward, while the opposite expansion center shows a trend of moving southward, and the shrinking cities gather further; 2) in the study of influencing factors, the results of multiple linear regression and random forest regression show that socio-economic factors play a major role in the formation of shrinking cities; 3) the precision of random forest regression is higher than that of multiple linear regression. The results show that per capita GDP has the greatest impact on the contraction intensity, followed by the unemployment rate, science and education expenses and the average wage of on-the-job workers. Among the four influencing factors, only the unemployment rate promotes the contraction, and the other three influencing factors inhibit the formation of shrinking cities to various degrees.
Electricity consumption in Europe has risen significantly in recent years, with households being the largest consumers of final electricity. Managing and reducing residential power consumption is critical for achieving efficient and sustainable energy management, conserving financial resources, and mitigating environmental effects. Many studies have used statistical models such as linear, multinomial, ridge, polynomial, and LASSO regression to examine and understand the determinants of residential energy consumption. However, these models are limited to capturing only direct effects among the determinants of household energy consumption. This study addresses these limitations by applying a path analysis model that captures the direct and indirect effects. Numerical and theoretical comparisons that demonstrate its advantages and efficiency are also given. The results show that Sub-metering components associated with specific uses, like cooking or water heating, have significant indirect impacts on global intensity through active power and that the voltage affects negatively the global power (active and reactive) due to the physical and behavioral mechanisms. Our findings provide an in-depth understanding of household electricity power consumption. This will improve forecasting and enable real-time energy management tools, extending to the design of precise energy efficiency policies to achieve SDG 7’s objectives.
The objective of this study is to explore the relationship between changing weather conditions and tourism demand in Thailand across five selected provinces: Chonburi (Pattaya), Surat Thani, Phuket, Chiang Mai, and Bangkok. The annual data used in this study from 2012 to 2022. The estimation method is threshold regression (TR). The results indicate that weather conditions proxied by the Temperature Humidity Index (THI) significantly affect tourism demand in these five provinces. Specifically, changes in weather conditions, such as an increase in temperature, generally result in a decrease in tourism demand. However, the impact of weather conditions varies according to each province’s unique characteristics or highlights. For example, tourism demand in Bangkok is not significantly affected by weather conditions. In contrast, provinces that rely heavily on maritime tourism, such as Chonburi (Pattaya), Phuket, and Surat Thani, are notably affected by weather conditions. When the THI in each province rises beyond a certain threshold, the demand for tourism in these provinces by foreign tourists decreases significantly. Furthermore, economic factors, particularly tourists’ income, significantly impact tourism demand. An increase in the income of foreign tourists is associated with a decrease in tourism in Pattaya. This trend possibly occurs because higher-income tourists tend to upgrade their travel destinations from Pattaya to more upscale locations such as Phuket or Surat Thani. For Thai tourists, an increase in income leads to a decrease in domestic tourism, as higher incomes enable more frequent international travel, thereby reducing tourism in the five provinces. Additionally, the study found that the availability and convenience of accommodation and food services are critical factors influencing tourism demand in all the provinces studied.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
Copyright © by EnPress Publisher. All rights reserved.