The wide distribution of the common beech (Fagus sylvatica) in Europe reveals its great adaptation to diverse conditions of temperature and humidity. This interesting aspect explains the context of the main objective of this work: to carry out a dendroclimatic analysis of the species Fagus sylvatica in the Polaciones valley (Cantabria), an area of transition with environmental conditions from a characteristic Atlantic type to more Mediterranean, at the southern limit of its growth. The methodology developed is based on the analysis of 25 local chronologies of growth rings sampled at different altitudes along the valley, generating a reference chronology for the study area. Subsequently, the patterns of growth and response to climatic variations are estimated through the response and correlation function, and the most significant monthly variables in the annual growth of the species are obtained. Finally, these are introduced into a Geographic Information System (GIS) where they are cartographically modeled in the altitudinal gradient through multivariate analysis, taking into account the different geographic and topographic variables that influence the zonal variability of the species response. The results of the analyses and cartographic models show which variables are most determinant in the annual growth of the species and the distribution of its climatic response according to the variables considered.
Europium (Eu) doped Calcium borophosphate (CBP) phosphors were synthesized via the solid-state diffusion method. The prepared Europium (Eu) doped Calcium borophosphate (CBP) powder was heated up to 600 ℃ for 6 h for a complete diffusion of ions in the powder system. XRD results showed that the prepared phosphors exhibit a well-crystallized hexagonal phase. The complete diffusion inside the CBP/Eu powder system has been confirmed by the presence of elements such as P, O, Bi, Ca, C, Eu, and B. Apart from that, the synthesized powder system has shown a down-conversion property where the Eu3+-activated ion was excited at 251 nm. Under the excitation of 251 nm, CBP/Eu phosphor showed intense emissions peaking at 591,617, and 693 nm due to the 5D0 → 7F1, 5D0 → 7F2, and 5D0 → 7F4 transition of Eu3+ ions. The obtained results suggest that the CBP/Eu phosphors have the potential for spectral response coating materials to improve photovoltaic (PV) panel efficiency.
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
Organomineral fertilizer is used to improve and ameliorate the supply of nutrients in soils. Right and adequate application of fertilizers are determinants of its nutrient supply efficiency, which in turn enhances the vegetative growth and yield of cucumber. Field experiments were conducted at the Research Farm of the Federal University of Agriculture, Abeokuta, Nigeria, to assess the effects of variety and rate of organomineral fertilizer on cucumber growth and yield. Trials were conducted from June to August 2019 and repeated from September to November 2019. The cultivars were Poinsett, Greengo, and Monalisa. The rates of organomineral fertilizer were 0, 2.5, or 5.0 tons. ha−1. The treatments were replicated three times. Cucumber vegetative characters, yield, and yield components were studied. ‘Greengo’ produced the most leaves, followed by ‘Monalisa’; ‘Poinsett’ produced the least. Application of 5.0 tons. ha−1 organomineral fertilizer produced the longest vines and fruits. ‘Greengo’ had the earliest days to 50% flowering, followed by ‘Monalisa’; ‘Poinsett’ had the most days to 50% flowering. Plants treated with an application of 5.0 tons. ha−1 organomineral fertilizer attained 50% flowering in 29 days, but in 30 days with an application of 2.5 tons. ha−1 organomineral fertilizer; the control treatment attained 50% flowering in 33 days. Application of 5.0 tons. ha−1 organomineral fertilizer produced the longest fruits, thicker fruit diameter, and highest fruit yield compared with 2.5 and 0 tons. ha−1 of organomineral fertilizer treatments. The Greengo variety with application of 5.0 tons. ha−1 of organomineral fertilizer is recommended for optimum growth and yield in south western Nigeria.
The objective of this research is to assess the current state of e-banking in Saudi Arabia. The banking industry is rapidly evolving to use e-banking as an efficient and appropriate tool for customer satisfaction. Traditional banks recommend online banking as a particular service to their customers in order to provide them with faster and better service. As a result of the rapid advancement of technology, banks have used e-banking and mobile banking to both accumulate users and conduct banking transactions. Nonetheless, the primary challenge with electronic banking is satisfying customers who use Internet banking. Thus, the current study seeks to determine what factors affect e-payment adoption with e-banking services. mobile banking, e-wallets, and e-banking, as well as the mediating role of customer trust, can drive e-payment adoption. We distributed the survey online and offline to a total of 336 participants. A convenience sampling technique was used; structure equation modeling (SEM), convergence and discriminant validity; and model fitness were achieved through Smart PLS 3. The findings have shown that mobile banking, e-banking, and e-wallets are three significant independent variables that mediate the role of customer trust in influencing e-payment adoption when using Internet banking services. They should emphasize trust-building activities, specifically in relation to the new ways of e-payment such as e-banking, m-payments, NFC, and e-proximity, which will further help reduce consumer perceptions of risk. The system developers should design user-friendly applications and e-payment apps to enhance consumers’ belief in using them for payment purposes over any Internet-enabled device. They should promptly respond to consumers in cases of failed e-payment transactions and be able to promptly demonstrate transparency in settling claims for such failed transactions. Future studies could benefit from implementing probability sampling to facilitate comparisons with non-probability sampling studies. This study selected responses from only Saudi Arabian adopters of mobile payment technology. We need to conduct research on non-adopters and analyze the results using the model we proposed in this study. Due to time and resource constraints, in depth research using a mixed-methods approach could not be conducted. Future studies can utilize a mixed-methods approach for further understanding.
Copyright © by EnPress Publisher. All rights reserved.