In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
This research focuses on addressing critical driving safety issues on university campuses, particularly vehicular congestion, inadequate parking, and hazards arising from the interaction between vehicles and pedestrians. These challenges are common across campuses and demand effective solutions to ensure safe and efficient mobility. To address these issues, the study developed detailed microsimulation models tailored to the Victor Levi Sasso campus of the Technological University of Panama. The primary function of these models is to evaluate the effectiveness of various safety interventions, such as speed reducers and parking reorganization, by simulating their impact on traffic flow and accident risk. The models provide calculations of traffic parameters, including speed and travel time, under different safety scenarios, allowing for a comprehensive assessment of potential improvements. The results demonstrate that the proposed measures significantly enhance safety and traffic efficiency, proving the model’s effectiveness in optimizing campus mobility. Although the model is designed to tackle specific safety concerns, it also offers broader applicability for addressing general driving safety issues on university campuses. This versatility makes it a valuable tool for campus planners and administrators seeking to create safer and more efficient traffic environments. Future research could expand the model’s application to include a wider range of safety concerns, further enhancing its utility in promoting safer campus mobility.
Road accidents involving motorcyclists significantly threaten sustainable mobility and community safety, necessitating a comprehensive examination of contributing factors. This study investigates the behavioral aspects of motorcyclists, including riding anger, sensation-seeking, and mindfulness, which play crucial roles in road accidents. The study employed structural equation modeling to analyze the data, utilizing a cross-sectional design and self-administered questionnaires. The results indicate that riding anger and sensation-seeking tendencies have a direct impact on the likelihood of road accidents, while mindfulness mitigates these effects. Specifically, mindfulness partially mediates the relationships between riding anger and road accident proneness, as well as between sensation-seeking and road accident proneness. These findings underscore the importance of effective anger management, addressing sensation-seeking tendencies, and promoting mindfulness practices among motorcyclists to enhance road safety and sustainable mobility. The insights gained from this research are invaluable for relevant agencies and stakeholders striving to reduce motorcycle-related accidents and foster sustainable communities through targeted interventions and educational programs.
A method for studying the resilience of energy and socio-ecological systems is considered; it integrates approaches developed at the International Institute of Applied Systems Analysis and the Melentyev Institute of Energy Systems (MESI) of the Siberian Branch of the Russian Academy of Sciences. The article discusses in detail the methods of using intelligent information technologies, in particular semantic technologies and knowledge engineering (cognitive probabilistic modeling), which the authors propose to use in assessing the risks of natural and man-made threats to the resilience of the energy sector and social and ecological systems. More attention is paid to the study and adaptation of the integral indicator of quality of life, which makes it possible to combine these interdisciplinary studies.
In the last several decades, cardiovascular diseases (CVDs) have emerged as a major hazard to human life and health. Conventional formulations for the treatment of CVD are available, but they are far from ideal because of poor water solubility, limited biological activity, non-targeting, and drug resistance. With the advancement of nanotechnology, a novel drug delivery approach for the treatment of CVDs has emerged: nano-drug delivery systems (NDDSs). NDDSs have shown significant advantages in tackling the difficulties listed above. Cytotoxicity is a difficulty with the use of non-destructive DNA sequences. NDDS categories and targeted tactics were outlined, as well as current research advancements in the diagnosis and treatment of CVDs. It’s possible that gene therapy might be included into nano-carriers in the delivery of cardiovascular medications in the future. In addition, the evaluation addressed the drug’s safety.
Copyright © by EnPress Publisher. All rights reserved.