Distributed biomass energy technology has strong adaptability to the types of raw materials, flexible project scale, can meet the needs of special users, better economy in small scale, easier commercial development, in line with the characteristics of biomass resources and China’s national conditions. The distributed utilization of biomass energy mainly includes biomass briquette fuel and biogas. The key technologies include biomass briquette fuel processing and combustion, large and medium-sized biogas engineering technology, biomass gasification pyrolysis and gas utilization. At present, China’s distributed biomass energy technology is mainly in the stage of technological improvement and application demonstration. It is expected that by 2030, most of the key technologies will be basically mature and have the conditions for industrialization. The main development direction of China’s distributed biomass energy industry is the replacement of traditional coal-fired gas, urban/rural clean living energy supply, and rural ecological environmental protection. The pollution caused by burning coal/fuel oil, and at the same time centering on the national new urbanization strategy, provide sustainable clean energy for the construction of new rural areas, and improve the level of rural ecological and environmental protection. At present, the main bottleneck restricting the development of distributed biomass energy industry is economy and reliability. The state should increase investment in technological innovation and policy support, convert the environmental and social benefits of biomass energy into cost benefits, and promote biomass energy. The development of the industry can be distributed and utilized.
This paper reviews and compares the opportunities and challenges in terms of port and intermodal development in China and India—the two fast-growing economic giants in the world. The study analyzes the future direction of these two countries’ port-hinterland intermodal development from the sustainability perspective. Both China and India face some major opportunities and challenges in port-hinterland intermodal development. The proposal of the Silk Road Economic Belt and the 21st-century Maritime Silk Road, also known as the Belt and Road Initiative (BRI), offers plentiful opportunities for China. A challenge for China is that its development of dry ports is still in the infancy stage and thus it is unable to catch up with the pace of rapid economic growth. As compared with China, India focuses more on the social aspect to protect the welfare of its residents, which in turn jeopardizes India’s port-hinterland intermodal development in the economic sense. The biggest challenge for India is its social institution, which would take a long time to change. These in-depth comparative analyses not only give the future direction of port-hinterland intermodal development in China and India but also provide references for other countries with similar backgrounds.
The expansion of road networks, taken place during the last decades, was driven by technological progress and economic growth. The most innovative products of this trend—modern motorways and international road corridors—provide an excellent level of service, traffic safety and necessary information to travelers. However, despite this undeniable progress, major impediments and respective challenges to road authorities and operators still remain. The present paper analytically presents the main current challenges in the road engineering field, namely: a) financing new projects, b) alternative energy resources, especially renewable energy, c) serviceability, including maintenance of road infrastructure, traffic congestion and quality of the network, d) climate change hazards due to greenhouse gas emissions increase, e) environmental impacts, f) safety on roads, streets and motorways, and g) economy and cost-effectiveness. In each country and over each network, challenges and concerns may vary, but, in most cases, competent authorities, engaged in road development policies, have to deal with most of these issues. The optimization of the means to achieve the best results seems to be an enduring stake. In the present paper, the origin and the main features of these challenges are outlined as well as their tendency to get amplified or diminished under the actual evolving economic conditions worldwide, where growth alternates with crisis and social hardship. Moreover, responses, meant to provide solutions to the said challenges, are suggested, including research findings of Aristotle University and innovative technological achievements, to drive the transition to a more sustainable future.
In this study, the development of rinnenkarren systems is analyzed. During the field studies, 36 rinnenkarren systems were investigated. The width and depth were measured at every 10 cm on the main channels and then shape was calculated to these places (the quotient of channel width and depth). Water flow was performed on artificial rinnenkarren system. A relation was looked for between the density of tributary channels and the average shape of the main channel, between the distance of tributary channels from each other and the shape of a given place of the main channel. The density and total length of the tributary channels on the lower and upper sections of the main channels being narrow at their lower end (11 pieces) and being wide at their lower end (10 pieces) of the rinnenkarren systems were calculated as well as their average proportional distance from the lower end of the main channel. The number of channel hollows was determined on the lower and upper sections of these main channels. It can be stated that the average shape of the main channel calculated to its total length depends on the density of the tributary channels and on the distance of tributary channels from each other. The main channel shape is smaller if less water flows on the floor for a long time because of the small density of the tributary channels and the great distance between the tributary channels. In this case, the channel deepens, but it does not widen. The width of the main channel depends on the number and location of the rivulets developing on channel-free relief. The main channel becomes narrow towards its lower end if the tributary rivulets are denser and longer on the upper part of the main rivulet developing on the channel-free, plain terrain and their distance is larger compared to the lower end. The channel hollows develop mainly at those places where the later developing tributary channels are hanging above the floor of the main channel. Thus, the former ones are younger than the latter ones. It can be stated that the morphology of the main channels (shape, channel hollows, and width changes of the main channel) is determined by the tributary channels (their number, location and age).
COVID-19 and the economic response have amplified and changed the nature of development challenges in fundamental ways. Global development cooperation should adapt accordingly. This paper lays out the urgency for new methods of development cooperation that can deliver resource transfers at scale, oriented to addressing climate change and with transparency and better governance. It looks at what is actually happening to major donor countries’ development cooperation programs and where the principal gaps lie, and offers some thoughts on how to move forward, notwithstanding the clear geopolitical rivalries that are evident.
The most immediate challenge is to provide a level of liquidity support to countries ravaged by the global economic downturn. Many developing countries will see double-digit declines in GDP, with some recording downturns not seen in peacetime. Alongside the short-term challenge of recovery, COVID-19 has laid bare longer-term trends that have pointed for some time to the lack of sustainability—environmental, social, and governance—in the way economic development was occurring in many places, including in advanced economies. This new landscape has significant implications for development cooperation in terms of scale, development/climate co-benefits, and transparency and accountability.
Copyright © by EnPress Publisher. All rights reserved.